Introduction to Physical Science

Accuracy, Precision, & Significant Figures
Presented by Robert Wagner

Accuracy & Precision

- Accuracy
 - How close you are to the correct value
- Precision
 - How close together are repeated measurements

mage Credit: Arbeck, CC BY 4.0 https://creativecommons.org/licenses/by/4.0, via Wikimedia Commons

Uncertainty

- How far measured values deviate from expected values
 - All measurements contain some uncertainty
 - Ex: 250 meters with an uncertainty of 10 meters
 - Could be between 240 meters and 260 meters
 - 250 +/- 10 meters

Percent Uncertainty

· Defined as follows:

. %

• δA = uncertainty in the measurement of A

 Example: A board is measured to be 8.0 +/- 0.2 meters. What is the percent uncertainty? 8.0 +/- 0.2 meters

A = 8.0; $\delta A = 0.2$

 $\% unc = \frac{\delta A}{A} \times 100\%$

 $\% \ unc = \frac{0.2}{8.0} \ x \ 100\%$

% unc = 0.025 x 100%

% unc = 2.5%

What are Significant Figures?

- · Some numbers are exact
 - · There are exactly 12 eggs in a dozen
 - There are exactly 2 wheels on a bicycle
 - · These have as many significant figures as needed
- Some numbers are estimates
 - People using different instruments might measure a piece of paper to be:
 - 220 mm (2 significant figures)
 - 218 mm (3 significant figures)
 - 217.6 mm (4 significant figures)

Rules for Determining Significant Figures

- · Non-zero digits are ALWAYS significant
- · Leading zeros are NEVER significant
- Embedded zeros (zeros appearing between two non-zero digits) are significant
- · Trailing zeros are significant ONLY if the decimal point is specified
- All digits to the left of the $x10^x$ in scientific notation are significant

Rules for Determining Significant Figures Significant figures flowchart Constant or yes Count all digits Prom first non-zero digit on right. count all digits from right-to-left digits from right-to-left gigts from righ

Significant Figures - Examples

· How many significant figures in:

• 300

• 300.0

• 0.000052

• 1.002504

• 0.2000

• 6.58x10⁸

• 12

300 - 1 Significant figure

300.0 - 4 significant figures

0.000052 - 2 significant figures

1.002504 - 7 significant figures

0.2000 - 4 significant figures

6.58x108 - 3 significant figures

12 - 2 significant figures or an infinite number of significant figures!

Rules for Calculations in Significant Figures

- When adding or subtracting, the last digit to be retained is determined by the input number that is most estimated (ends at the highest place value)
- When multiplying or dividing, the answer can contain no more significant figures than the input number with the least significant digits

Examples

• 2.583 * 6.28x10⁵ =

• 25.1 - 41.5 + 16.31 =

 $2.583 \times 6.28 \times 10^{5}$

1,622,124

2.583 has four significant figures

6.28x10⁵ has three significant figures

The answer must have three

significant figures

1,620,000 or $1.62x10^6$

Examples

• 2.583 * 6.28x10⁵ =

25.1 - 41.5 + 16.31

-0.09

25.1 Stops at the tenths place

41.5 Stops at the tenths place

• 25.1 - 41.5 + 16.31 =

16.31 Stops at the hundredths

place

Answer must stop at the tenths

place = -0.1

Summary

- Accuracy and precision can tell us about our measurements
- All measurements have an uncertainty this can be expressed as an error (+/-) or a percent uncertainty
- Significant figures are important in science as all measurements have an uncertainty associated with them