

Uncertainty

- How far measured values deviate from expected values
- All measurements contain some uncertainty
- Ex: 250 meters with an uncertainty of 10 meters
- Could be between 240 meters and 260 meters
- 250 +/- 10 meters

Accuracy \& Precision

- Accuracy
- How close you are to the correct value
- Precision
- How close together are repeated measurements

Percent Uncertainty

- Defined as follows:
. \%
\%
- $\delta \mathrm{A}=$ uncertainty in the measurement of A
- Example: A board is measured to be 8.0 $+/-0.2$ meters. What is the percent uncertainty?

$$
\begin{aligned}
& 8.0+/-0.2 \text { meters } \\
& \mathrm{A}=8.0 ; \delta \mathrm{A}=0.2 \\
& \% \text { unc }=\frac{\delta A}{A} \times 100 \% \\
& \% \text { unc }=\frac{0.2}{8.0} \times 100 \% \\
& \% \text { unc }=0.025 \times 100 \% \\
& \% \text { unc }=2.5 \%
\end{aligned}
$$

What are Significant Figures?

- Some numbers are exact
- There are exactly 12 eggs in a dozen
- There are exactly 2 wheels on a bicycle
- These have as many significant figures as needed
- Some numbers are estimates
- People using different instruments might measure a piece of paper to be:
- 220 mm (2 significant figures)

218 mm (3 significant figures)

- 217.6 mm (4 significant figures)

Rules for Determining Significant Figures

- Non-zero digits are ALWAYS significant
- Leading zeros are NEVER significant
- Embedded zeros (zeros appearing between two non-zero digits) are significant
- Trailing zeros are significant ONLY if the decimal point is specified
- All digits to the left of the $\times 10^{\mathrm{x}}$ in scientific notation are significant

Rules for Determining Significant Figures

Significant Figures - Examples

- How many significant figures in:
- 300
- 300.0
- 0.000052
- 1.002504
- 0.2000
- 6.58×10^{8}
- 12

300-1 Significant figure 300.0-4 significant figures 0.000052 - 2 significant figures 1.002504-7 significant figures $0.2000-4$ significant figures
$6.58 \times 10^{8}-3$ significant figures
12-2 significant figures or an infinite number of significant figures!

Rules for Calculations in Significant Figures

- When adding or subtracting, the last digit to be retained is determined by the input number that is most estimated (ends at the highest place value)
- When multiplying or dividing, the answer can contain no more significant figures than the input number with the least significant digits

Examples

- $2.583 * 6.28 \times 10^{5}=$
- $25.1-41.5+16.31=$
-

$2.583 \times 6.28 \times 10^{5}$
1,622,124
2.583 has four significant figures
6.28×10^{5} has three significant figures
The answer must have three significant figures
$1,620,000$ or 1.62×10^{6}

Examples

- $2.583 * 6.28 \times 10^{5}=$
- $25.1-41.5+16.31=$
-

$25.1-41.5+16.31$
-0.09
25.1 Stops at the tenths place
41.5 Stops at the tenths place
16.31 Stops at the hundredths place

Answer must stop at the tenths place $=-0.1$

Summary

- Accuracy and precision can tell us about our measurements
- All measurements have an uncertainty this can be expressed as an error (+/-) or a percent uncertainty
- Significant figures are important in science as all measurements have an uncertainty associated with them

