Introduction to Physical Science

Physical Quantities and Units Presented by Robert Wagner

Numbers in Physics

- Physics deals with scales of both the very
large and very small
- Scientific Notation - based on powers of 10
- Systems of Units
- SI Units - Used in science worldwide
- English Units - Used primarily in the US, outside of science

SI Units

- Fundamental and derived units
- Fundamental units - defined only in terms of the procedure used to measure them
- Derived units - expressed as combinations of fundamental units (velocity = distance) time)

Length	Mass	Time	Electric Current
meter (m)	kilogram (kg)	second (s)	ampere (A)
Table 1.1 Fundamental SI Units			

Image credit: Openstax College Physics Table 1.1 C C BY 4.0

Fundamental Units

- For now, we look at three fundamental units
- Second - 9,192,631,770 vibrations os a cesium atom
- Meter - Distance traveled by light in 1/299,792,458 second
- Kilogram - Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)

Fundamental Units

- For now, we look at three fundamental units
- Second - 9,192,631,770 vibrations os a cesium atom

- Meter - Distance traveled by light in 1/299,792,458 second
- Kilogram - Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)
age Credit: Openstax College Physics Figure 1.19 C C By 4.0

Fundamental Units

- For now, we look at three fundamental units
- Second - 9,192,631,770 vibrations of a cesium atom
- Meter - Distance traveled by light in 1/299,792,458 second
- Kilogram - Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)

Image Credit: Daderot, cco, via wikimedia Commons

Metric Units

Profix	ssmbol	value	Exampe form	no oppore		
ex	E	${ }^{10^{18}}$	exaneter	Em	$10^{18 \mathrm{~m}^{\text {m }}}$	
peat	p	$10^{\text {15 }}$	peasseond	Ps	${ }^{10^{15} \mathrm{~s}}$	30 milor y yas
tea	T	${ }^{10^{12}}$	teamat	${ }^{\text {w\% }}$	$10^{10^{12}}$	poweralusere cuipu
gga	-	10°	gganere	${ }_{\text {ort }}$	${ }_{10}{ }^{\text {\% }} \mathrm{Hz}$	amicomane topeonery
moge	m	10^{6}	mogacuif	MCI	${ }^{10}{ }^{6} \mathrm{Ci}$	nigradacosminy
${ }_{\text {kio }}$	*	${ }^{10}{ }^{3}$	kiomear	${ }^{\mathrm{km}}$	${ }^{10^{3} \mathrm{~m}}$	abautiom mio
neato	n	${ }_{10}{ }^{2}$	necoster	${ }^{\text {nL }}$	${ }^{10^{2} \mathrm{~L}}$	26 gatons
dota	${ }^{\text {da }}$	${ }^{10}$	detagam	${ }^{\text {deg }}$	${ }^{10} \mathrm{~g}$	tespoono otubuer

- Metric Prefixes:
- Based on powers of 10
- Scientific Notation
- Written as powers of10
- $800=8 \times 10^{2}$
- $0.045=4.5 \times 10^{-2}$

Unit Conversions

- Convert between units using dimensional analysis
- 8000 m to km
- 1.00 year to seconds
- $60.0 \mathrm{~km} / \mathrm{hr}$ to m / s

8000 meters
8000 meters $x \frac{1 \text { kilometer }}{1000 \text { meters }}$
8000 meters $x \frac{1 \text { kilometer }}{1000 \text { iteters }}$
$\frac{8000}{1000}$ kilometers
8 kilometers

Unit Conversions

- Convert between units using dimensional analysis
- 8000 m to km
- 1.00 year to seconds
- $60.0 \mathrm{~km} / \mathrm{hr}$ to m / s
1.00 year
1.00 year $x \frac{365.25 \text { days }}{1 \text { year }} \times \frac{24 \text { hours }}{1 \text { day }} \times \frac{60 \text { minutes }}{1 \text { hour }} \times \frac{60 \text { second } x}{1 \text { minume }}$

$=365.25 \times 24 \times 60 \times 60$ seconds
$=31,557,600$ seconds
$=3.16 \times 10^{7}$ seconds

Unit Conversions

- Convert between units using dimensional analysis
- 8000 m to km
- 1.00 year to seconds
- $60.0 \mathrm{~km} / \mathrm{hr}$ to m / s

$$
\begin{aligned}
& 60.0 \frac{\text { kilometers }}{\text { hour }} \\
& 60.0 \frac{\text { kilometers }}{\text { hour }} \times \frac{1000 \text { meters }}{1 \text { kilometer }} \times \frac{1 \text { hour }}{3600 \text { seconds }} \\
& 60.0 \frac{\text { kiloneters }}{\lambda \text { yur }} \times \frac{1000 \text { meters }}{1 \text { kilon } \text { ter }} \times \frac{1 \text { hो }}{3600 \text { seconds }} \\
& =\frac{60.0 \times 1000 \text { meters }}{3600} \frac{\text { second }}{\text { secon }} \\
& =16.7 \frac{\text { meters }}{\text { second }}
\end{aligned}
$$

Summary

- Physics deals with both very large and very small numbers
- SI/metric units are used universally in science
- We can convert between units by dimensional analysis

