Introduction to Physical Science

Physical Quantities and Units Presented by Robert Wagner

Numbers in Physics

- Physics deals with scales of both the very large and very small
 - Scientific Notation based on powers of 10
- · Systems of Units
 - SI Units Used in science worldwide
 - English Units Used primarily in the US, outside of science

SI Units

- · Fundamental and derived units
 - Fundamental units defined only in terms of the procedure used to measure them
 - Derived units expressed as combinations of fundamental units (velocity = distance/ time)

Length	Mass	Time	Electric Current
meter (m)	kilogram (kg)	second (s)	ampere (A)

Table 1.1 Fundamental SI Units

Image Credit: OpenStax College Physics Table 1.1 CC BY 4.0

Fundamental Units

- For now, we look at three fundamental units
 - Second 9,192,631,770 vibrations os a cesium atom
 - Meter Distance traveled by light in 1/299,792,458 second
 - Kilogram Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)

Image Credit: NASA, Public Domain, via Wikimedia Commons

Fundamental Units

- For now, we look at three fundamental units
 - Second 9,192,631,770 vibrations os a cesium atom
 - Meter Distance traveled by light in 1/299,792,458 second
 - Kilogram Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)

Figure 1.19 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed

Image Credit: OpenStax College Physics Figure 1.19 CC BY 4.0

Fundamental Units

- For now, we look at three fundamental units
 - Second 9,192,631,770 vibrations of a cesium atom
 - Meter Distance traveled by light in 1/299,792,458 second
 - Kilogram Mass of a platinum-iridium cylinder kept near Paris. (Now defined using the Meter, Second and Planck's Constant.)

Image Credit: Daderot, CCO, via Wikimedia Commons

Metric Units

- · Metric Prefixes:
 - Based on powers of 10
- · Scientific Notation
 - Written as powers of 10
 - $800 = 8 \times 10^2$
 - $0.045 = 4.5 \times 10^{-2}$

Prefix	Symbol	Value	Example (some are approximate)			
еха	Е	1018	exameter	Em	10 ¹⁸ m	distance light travels in a century
peta	Р	10 ¹⁵	petasecond	Ps	10 ¹⁵ s	30 million years
tera	т	1012	terawatt	TW	10 ¹² W	powerful laser output
giga	G	10°	gigahertz	GHz	10 ⁹ Hz	a microwave frequency
mega	м	10 ⁶	megacurie	MCI	10 ⁶ Ci	high radioactivity
kilo	k	10 ³	kilometer	km	10 ³ m	about 6/10 mile
hecto	h	10 ²	hectoliter	hL	10 ² L	26 gallons
deka	da	101	dekagram	dag	10 ¹ g	teaspoon of butter

Image Credit: OpenStax College Physics Table 1.2 CC BY 4.0

Unit Conversions

- Convert between units using dimensional analysis
 - 8000 m to km
 - 1.00 year to seconds
 - 60.0 km/hr to m/s

8000 meters

 $8000 meters x \frac{1 kilometer}{1000 meters}$

 $8000 \frac{meters}{1000 \frac{meters}{meters}} \times \frac{1 \frac{kilometer}{1000 \frac{meters}{meters}}$

 $\frac{8000}{1000} kilometers$

8 kilometers

Unit Conversions

- Convert between units using dimensional analysis
 - 8000 m to km
 - 1.00 year to seconds
 - 60.0 km/hr to m/s

 $1.00 \ year \ x \ \frac{365.25 \ days}{1 \ year} \ x \ \frac{24 \ hours}{1 \ day} \ x \ \frac{60 \ minutes}{1 \ hour} \ x \ \frac{60 \ seconds}{1 \ minute}$ $1.00 \ year \ x \ \frac{365.25 \ mex}{1 \ mex} \ x \ \frac{24 \ hours}{1 \ mex} \ x \ \frac{60 \ minutes}{1 \ hour} \ x \ \frac{60 \ minutes}{1 \ moure}$ $= 365.25 \ x \ 24 \ x \ 60 \ x \ 60 \ seconds$

= 31,557,600 seconds

 $= 3.16x10^7 seconds$

Summary

- Physics deals with both very large and very small numbers
- SI/metric units are used universally in science
- We can convert between units by dimensional analysis

Unit Conversions

- Convert between units using dimensional analysis
 - 8000 m to km
 - 1.00 year to seconds
 - 60.0 km/hr to m/s

$$60.0 \frac{kilometers}{hour}$$

$$60.0 \frac{kilometers}{hour} \times \frac{1000 \text{ meters}}{1 \text{ kilometer}} \times \frac{1 \text{ hour}}{3600 \text{ seconds}}$$

$$60.0 \frac{kilometers}{hour} \times \frac{1000 \text{ meters}}{1 \text{ kilometer}} \times \frac{1 \text{ hour}}{3600 \text{ seconds}}$$

$$= \frac{60.0 \times 1000 \text{ meters}}{3600 \text{ second}}$$

$$= 16.7 \frac{\text{meters}}{1000 \text{ meters}}$$