Introduction to Physical Science

Vectors and Scalars Presented by Robert Wagner

Displacement

- What do we mean by displacement?
 - · The change in position of an object
 - •
 - •
 - •
 - · SI unit of displacement is the meter

Displacement

- · Displacement explained
 - · Only looks at initial and final position
 - · Does NOT tell us about total motion!
 - Is a vector quantity magnitude and direction
 - Example: Motion of professor

Figure 2.3 A professor paces left and right while lecturing. Her position relative to Earth is given by x. The ± 2.0 m displacement of the professor relative to Earth is represented by an arrow pointing to the right.

Displacement

- · Displacement explained
 - · Only looks at initial and final position
 - Does NOT tell us about total motion!
 - Is a vector quantity magnitude and direction
 - Example: Motion of professor
- · Distance vs. Distance traveled
 - Distance is the magnitude of the displacement vector

 $x_0 = 1.5m$

 $x_f = 3.5m$

 $\Delta x = x_f - x_0$

 $\Delta x = 3.5m - 1.5m$

 $\Delta x = +2.0m$

The positive sign indicates movement in the +x direction

Image Credit: OpenStax College Physics Figure 2.3 CC BY 4.0

Vectors and Scalars

· Scalar Quantity:

· Has a magnitude, but no direction

· Temperature:

• Distance: 5.0 meters

· Vector Quantity

· Has a magnitude and a direction

Velocity: 30 m/s EastForce: 35 N down

• Can be indicated with an arrow - longer arrow means a larger magnitude; direction of arrow indicates the direction

• Can be indicated with a + or - sign. The sign tells the direction; numerical value indicates magnitude

Summary

- Displacement is the net motion of an object. It is a vector quantity
- Vectors have a magnitude and a direction Scalars have only a magnitude
- Coordinate systems can be chosen to make the analysis of the problem easier

Coordinate Systems

- · In general,
 - Horizontal motion: motion to the right is positive
 - Vertical motion: motion upward is positive
- Sometimes it is more convenient to switch these
 - Example: falling objects

Figure 2.7 it is usually convenient to consider motion upward or to the right as positive (+) and motion downward or to the left as negative (-).

Image Credit: OpenStax College Physics Figure 2.7 CC BY 4.0