Introduction to Physical Science
Vectors and Scalars Presented by Robert Wagner

Displacement

- What do we mean by displacement?
- The change in position of an object
-
-
-
- SI unit of displacement is the meter

Displacement

- Displacement explained
- Only looks at initial and final position
- Does NOT tell us about total motion
- Is a vector quantity - magnitude and direction
- Example: Motion of professor

Displacement

- Displacement explained
- Only looks at initial and final position
- Does NOT tell us about total motion!
- Is a vector quantity - magnitude and direction
- Example: Motion of professor
- Distance vs. Distance traveled
- Distance is the magnitude of the displacement vector
$x_{0}=1.5 m$
$x_{f}=3.5 m$
$\Delta x=x_{f}-x_{0}$
$\Delta x=3.5 m-1.5 m$
$\Delta x=+2.0 m$
The positive sign indicates
movement in the $+x$ direction

Vectors and Scalars

- Scalar Quantity:
- Has a magnitude, but no direction
- Temperature:
- Distance: 5.0 meters
- Vector Quantity
- Has a magnitude and a direction
- Velocity: $30 \mathrm{~m} / \mathrm{s}$ East
- Force: 35 N down
- Can be indicated with an arrow - longer arrow means a larger magnitude ; direction of arrow indicates the direction
- Can be indicated with $\mathrm{a}+$ or - sign. The sign tells the direction ; numerical value indicates magnitude

Coordinate Systems

- In general,
- Horizontal motion: motion to the right is positive
- Vertical motion: motion upward is positive
- Sometimes it is more convenient to switch these

Summary

- Displacement is the net motion of an object. It is a vector quantity
- Vectors have a magnitude and a direction - Scalars have only a magnitude
- Coordinate systems can be chosen to make the analysis of the problem easier

