Introduction to Physical Science
Velocity and Acceleration Presented by Robert Wagner

Time

- One of the fundamental physical quantities
- In physics, it is the interval over which change occurs.
-
-

.

- For our purposes, , and t itself represents elapsed time.

Average Velocity

- only tells us the average motion during that time.
- Velocity could vary
- Instantaneous velocity
- Velocity that occurs at a particular instant - (i.e. speedometer)

Example

- A trip to the store and back
- Displacement $=0$ since we end up where we started!
- If a trip takes 30. minutes (half an hour)
-
- Average speed: (
- Why is equal to $0 \mathrm{~km} / \mathrm{hr}$?
- Velocity is positive in one direction and negative in the other

Image Credit: Openstax College Physics Figure 2.10 CC BY 4.0
 distance traveled is 6 km . The average speed is $12 \mathrm{~km} / \mathrm{m}$. The displacement for the round trip is zero, since there was no net change in postition. Thus the average velocity is zero

Acceleration

- Average Acceleration
- Change in velocity divided by the change in time
- Acceleration is a vector quantity
- SI units are
- Ex: Going from 0 to $10 . \mathrm{m} / \mathrm{s}$ in 5.0 seconds

$$
\begin{aligned}
& \bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{o}}{t_{f}-t_{o}} \\
& \bar{a}=\frac{\Delta v}{\Delta t}=\frac{10 . \mathrm{m} / \mathrm{s}}{5.0 \mathrm{~s}} \\
& \bar{a}=2.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

- Acceleration occurs when velocity changes
- Can increase, decrease, or change direction
- Instantaneous acceleration

[^0]

Example : Train Slowing

- Train accelerates from $30.0 \mathrm{~km} / \mathrm{hr}$ in the first 20.0 s of its motion
- Start with a sketch
- What do we know?
- Calculate Δv

$$
\xrightarrow[v_{i}=30 . \mathrm{km/h}]{v_{0}=0 \mathrm{kmh}}
$$

Fguve 21

- Solve for
- Convert to get rid of mixed units - Use SI units

Image Credit: Openstax College Physics - Figure $\mathbf{2 . 1 6}$ CC BY 4.0

Example : Train Slowing

- Train accelerates from $30.0 \mathrm{~km} / \mathrm{hr}$ in the first 20.0 s of its motion
- Start with a sketch
- What do we know?
- Calculate Δv
- Solve for
- Convert to get rid of mixed units - Use SI units

$v_{o}=0 \mathrm{~km} / \mathrm{hr} ; v_{f}=30.0 \mathrm{~km} / \mathrm{hr} ; \Delta t=20.0 \mathrm{~s}$ $\Delta v=v_{f}-v_{o}=+30.0 \mathrm{~km} / \mathrm{hr}-0 \mathrm{~km} / \mathrm{hr}=30.0 \mathrm{~km} / \mathrm{hr}$
$\bar{a}=\frac{\Delta v}{\Delta t}=\frac{+30.0 \mathrm{~km} / \mathrm{hr}}{20.0 \mathrm{~s}}=1.5 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
$\bar{a}=\frac{+30.0}{20.0 \mathrm{~s}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~N}} \times \frac{1 \times 2}{3600 \mathrm{~s}}$
$\bar{a}=0.417 \mathrm{~m} / \mathrm{s}^{2}$

Summary

- Acceleration and velocity are both vectors
- Deceleration is not necessarily the same as a negative acceleration
- In physics, acceleration occur when an object increases speed decreases speed or changes direction

[^0]: ## Deceleration

 - Acceleration opposite to the direction of motion
 - (a) has a positive acceleration and is speeding up
 - (b) has a negative acceleration and is slowing down
 - (c) has a positive acceleration but is slowing down
 - (d) has a negative acceleration and is speeding up
 - Deceleration Negative acceleration

 Image Credit: Openstax College Physics. Figure 2.14 CC BY 4.0

