Introduction to Physical Science
Equations of Motion Presented by Robert Wagner

Notation

- Take the initial time to be zero
. so,
- Drop the f subscript for final values

Assume constant acceleration (avoid calculus!)

Kinematic Equations

- Solving for displacement (Δx) and final position (x)
- Equation 1:
- Equation 2:
(for constant
acceleration)

Example

- A jogger runs with an average velocity of $4.00 \mathrm{~m} / \mathrm{s}$ for 2.00 minutes. What is the final position?
- Draw a sketch
- Identify equation - final position
- Identify known values

- Convert units as needed (minutes to seconds)
- Enter values in the equation

Example

- A jogger runs with an average velocity of $4.00 \mathrm{~m} / \mathrm{s}$ for 2.00 minutes. What is the final position?
- Draw a sketch
- Identify equation - final position
- Identify known values
- Convert units as needed (minutes to seconds)
- Enter values in the equation
nage Credit: Openstax College Physics - Figure 2.26 CC BY 4.

$x=x_{o}+\bar{v} t$
$\bar{v}=4.00 \mathrm{~m} / \mathrm{s} ; \Delta t=2.00 \mathrm{~min} ; x_{o}=0 \mathrm{~m}$
$2.00 \mathrm{~min} x \frac{60 \text { seconds }}{1 \mathrm{~min}}=120$. seconds
$x=0 m+(4.00 \mathrm{~m} / \mathrm{s})(120 . \mathrm{s})$
$x=480$. meters

Kinematic Equations

- Solving for final velocity
- Applies with constant acceleration

Example

- An airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$ and decelerates at $1.50 \mathrm{~m} /$ s^{2} for 40.0 s . What is the final velocity?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve
- Acceleration negative means that final velocity will be less than initial velocity

```
    \mp@subsup{v}{0}{}}=70.0\textrm{m}/\textrm{s
    a=-1.50 m/\mp@subsup{s}{}{2}
        \mp@subsup{v}{f}{}=?
Figure 2.28
```

Image Credit: Openstax College Physics - Figure 2.28 CC BY 4.0

Example

- An airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$ and decelerates at $1.50 \mathrm{~m} /$ s^{2} for 40.0 s . What is the final velocity?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve
- Acceleration negative means that final velocity will be less than initial velocity

$v_{o}=70.0 \mathrm{~m} / \mathrm{s} ; a=-1.50 \mathrm{~m} / \mathrm{s}^{2} ; t=40.0 \mathrm{~s}$
Unknown $=v_{f}$
$v=v_{o}+a t$
$v=70.0 \mathrm{~m} / \mathrm{s}+\left(-1.50 \mathrm{~m} / \mathrm{s}^{2}\right)(40.0 \mathrm{~s})$
$v=10.0 \mathrm{~m} / \mathrm{s}$

Kinematic Equations

- Solving for the final position when velocity is not constant
- Acceleration 0
-

Example

- A dragster accelerates at $20.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.56 seconds. How far does it travel during this time?
- Draw a sketch
- Identify known values and unknown
- Identify equation to use
- Plug in known values and solve equation

$v_{o}=0 ; a=26.0 \mathrm{~m} / \mathrm{s}^{2} ; t=5.56 \mathrm{~s}$
Unknown: x
$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}$
x_{o} and v_{o} are both zero
$x=\frac{1}{2} a t^{2}$
$x=\frac{1}{2}\left(26.0 \mathrm{~m} / \mathrm{s}^{2}\right)(5.56 \mathrm{~s})^{2}$
$x=402 m$

Kinematic Equations

- Solving for the final velocity when velocity is not constant
- Acceleration 0

Example

- Calculate the final velocity of the dragster from the previous example without using the time.
- Draw a sketch
- Identify known values and unknown
- Identify equation to use

- Plug in known values and solve equation

Example

- Calculate the final velocity of the dragster from the previous example without using the time.
- Draw a sketch
- Identify known values and unknown
- Identify equation to use
- Plug in known values and solve equation

$v_{o}=0 ;\left(x-x_{\rho}\right)=402 \mathrm{~m} ; a=26.0 \mathrm{~m} / \mathrm{s}^{2}$
Unknown - final velocity
$v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)$
$v^{2}=0^{2}+2\left(26.0 \mathrm{~m} / \mathrm{s}^{2}\right)(402 \mathrm{~m})$
$v^{2}=2.09 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}$
$v=\sqrt{2.09 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}}=145 \mathrm{~m} / \mathrm{s}$

Kinematic Equations

- Summary of the kinematic equations (constant acceleration)
-
-
-
-
-

Problem Solving Strategies

- 1) Examine the situation and draw a simple sketch
- 2) Make a list of what is known
- 3) Identify what needs to be determined in the problem
- 4) Find an equation or equations to help you solve the problem
- 5) Substitute known values into the equation - check units
- 6) Is the answer reasonable?

Summary

- The kinematic equations can be used to solve many problems in one dimension
- In these, we assume that the acceleration is constant
- Utilizing problem solving strategies will help you to solve various physics problems

