Introduction to Physical

 ScienceFalling Objects
Presented by Robert Wagner

Gravity

- All objects fall at the same rate in a gravitational field
- Mass does not matter
- If we can eliminate air resistance, a hammer and a feather will fall at the same rate - Free fall
- Acceleration due to gravity
- Can be positive or negative depending on coordinate system used
- If up is positive,
- If down is positive,

Example

- A person at the edge of a cliff throws a rock straight upward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. Find the position and velocity as it falls to earth at 1.00 s 2.00s and 3.00s (neglect air resistance)
- Draw a sketch
- Identify known values

$$
\begin{aligned}
& v_{0}=13.0 \mathrm{~m} / \mathrm{s} \uparrow \quad \downarrow^{a=-9.8 \mathrm{~m} / \mathrm{s}^{2}}{ }^{y}{ }^{y} x \\
& \text { Figure } 2.39
\end{aligned}
$$

- Identify equation
- Enter values in the equation and solve

Example

- A person at the edge of a cliff throws a rock straight upward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. Find the position and velocity as it falls to earth at 1.00 s, 2.00 s and 3.00 s (neglect air resistance)
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
$y_{o}=0 ; v_{o}=13.0 \mathrm{~m} / \mathrm{s} ; a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
For $t=1.0 \mathrm{~s}$, find position
$y=y_{o}+v_{o} t-\frac{1}{2} g t^{2}$
$y_{1}=0+(13.0 \mathrm{~m} / \mathrm{s})(1.00 \mathrm{~s})+\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})^{2}$
$y_{1}=+8.10 m$
sign means it is above its starting position

age Credit: Openstax College Physics - Figure 2.39 CC BY 4.0
\square

Example

- A person at the edge of a cliff throws a rock straight upward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. Find the position and velocity as it falls to earth at 1.00 s , 2.00 s and 3.00 s (neglect air resistance)
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
$y_{o}=0 ; v_{o}=13.0 \mathrm{~m} / \mathrm{s} ; a=-\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$
For $t=1.0 \mathrm{~s}$, find velocity
$v_{1}=v_{o}-g t$
$v_{1}=13.0 \mathrm{~m} / \mathrm{s}-\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})^{2}$
$v_{1}=+3.20 \mathrm{~m} / \mathrm{s}$
+ sign means it is moving upward

Example

Determine values for 2.00 s and 3.00 s Match the table below

Time, t	Postion, y	Velocity, v
1.00 s	8.10 m	$3.20 \mathrm{~m} / \mathrm{s}$
2.00 s	${ }_{6} 640 \mathrm{~m}$	$-6.60 \mathrm{~m} / \mathrm{s}$
3.00 s	$-5.10 \mathrm{~m}$	-16.4m/s

- A person at the edge of a cliff throws a rock straight upward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$. Find the position and velocity as it falls to earth at 1.00 s , 2.00s and 3.00s (neglect air resistance)
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example

- A rock thrown downward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$, What is the velocity of the rock when it is 5.10 m below the starting point?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use

$$
v_{0}=-13.0 \mathrm{~m} / \mathrm{s} \downarrow \downarrow=-9.8 \mathrm{~m} / \mathrm{s}^{2} \stackrel{y}{y}_{\longrightarrow} x
$$

Figure 2.41

- Plug in known values and solve

Example

$v_{0}=-13.0 \mathrm{~m} / \mathrm{s} \downarrow \downarrow \mid=-9.8 \mathrm{~m} / \mathrm{s}^{2} \stackrel{y}{4}_{\longrightarrow}^{\longrightarrow} x$
 -

A rock thrown downward with an initial velocity of $13.0 \mathrm{~m} / \mathrm{s}$, What is the velocity of the rock when it is 5.10 m below the starting point?

- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve
ege Physics - Figure 2.41 CC BY 4.
$y_{o}=0 ; v_{o}=-13.0 \mathrm{~m} / \mathrm{s} ; a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
Unknown: v_{f}
$v^{2}=v_{o}^{2}-2 g\left(y-y_{o}\right)$
$v^{2}=(-13.0 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(-5.10 \mathrm{~m}-0 \mathrm{~m})$
$v^{2}=268.96 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$v= \pm 16.4 \mathrm{~m} / \mathrm{s}$
Since the rock is heading down,
$v=-16.4 \mathrm{~m} / \mathrm{s}$

Summary

- In the absence of air resistance, all objects will fall at the same rate
- The acceleration in free fall problems is given by

The kinematic equations remain the same otherwise

