Introduction to Physical Science
Work and Kinetic Energy Presented by Robert Wagner

Example

- How much work is done on the lawnmower by the person pushing it. The person exerts a force of 60.0 N over a distance of 25.0 meters.
- Draw a sketch
- Identify known values
- Identify equation

- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 7.2 CC BY 4.0

Definition of Work

- What is work?
- Product of force and the distance through which the force acts in the same direction
- ; For this class, we consider 1 dimension so
-
- If the force is not in the direction through which the object moves, no work is done. If the object does not move, no work is done
- Units =
- Small amount of energy - would lift a 100 gram apple a distance of 1 meter
xample

- How much work is done on the lawnmower by the person pushing it. The person exerts a force of 60.0 N over a distance of 25.0 meters.
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

What Happens to the Work Done?

- Suppose a lawnmower is pushed at a constant speed
- The energy is converted to friction and then to heat
- Carrying an object up stairs
- Converts the work into potential energy which is stored and can be released later
- Net Work: Net force causes acceleration
- Work-Energy Theorem
\qquad
-

Kinetic Energy

- This is the translational kinetic energy of an object with mass m, moving at velocity v in a straight line
- Kinetic Energy depend on the square of the velocity
- Object moving twice as fast will have four times the kinetic energy

- A 30.0 kg package moves on a conveyor system at $0.500 \mathrm{~m} / \mathrm{s}$. What is the
kinetic energy?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve
$m=30.0 \mathrm{~kg} ; v=0.500 \mathrm{~m} / \mathrm{s}$
$K E=\frac{1}{2} m v^{2}$
$K E=\frac{1}{2}(30.0 \mathrm{~kg})(0.500 \mathrm{~m} / \mathrm{s})^{2}$
$K E=3.75$ Joules

Example

- A 30.0 kg package is pushed with a constant force of $120 . \mathrm{N}$ through a distance of 0.800 m . The frictional force opposing the motion is 5.00 N . What is the net work?
- Draw a sketch
- List known values ; identify unknown

$$
\begin{aligned}
& \text { Figure } 7.4 \mathrm{~A} \text { package on a roller bett is pushed horizontaly through a } \\
& \text { distarce. }
\end{aligned}
$$

- Determine equation to use
- Plug in known values and solve

Image Credit: Openstax College Physics - Figure 7.4 CC BY 4.0

- A 30.0 kg package is pushed with a constant force of 120. N through a distance of 0.800 m . The frictional force opposing the motion is 5.00 N What is the net work?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve

$m=30.0 \mathrm{~kg} ; F=120 . \mathrm{N} ; d=0.800 \mathrm{~m} ; f=5.00 \mathrm{~N}$
$F_{n e t}=120 . N-5.00 N=115 N$
$W_{\text {net }}=F_{\text {net }} \cdot d$
$W_{\text {net }}=(115 \mathrm{~N}) \cdot(0.800 \mathrm{~m})$
$W_{\text {net }}=92.0 \mathrm{~N} \cdot \mathrm{~m}=92.0$ Joules
No work done by the gravitational force
normal force as they operate
perpendicular to the motion.

Example

- A 30.0 kg package is pushed with a constant force of 120. N through a distance of 0.800 m . The frictional force opposing the motion is 5.00 N . What is the final velocity?
- Draw a sketch
- List known values ; identify unknown
- Determine equation to use
- Plug in known values and solve

Figure 7.4 A package on a roller bet is pussed horizontaly through a
distanced.
mage Credit: Openstax College Physics - Figure 7.4 CC BY 4.0

$$
\begin{aligned}
& K E_{\text {initial }}=3.75 \text { Joules } ; W_{\text {net }}=92.0 \text { Joules } \\
& K E_{\text {initial }}=\frac{1}{2} m v_{o}^{2}=3.75 \text { Joules } \\
& W_{n e t}=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{o}^{2} \\
& \frac{1}{2} m \nu^{2}=W_{\text {nec }}+\frac{1}{2} m v_{o}^{2}=92.0 \text { Joules }+3.75 \text { Joules } \\
& \frac{1}{2} m v^{2}=95.75 \text { Joules } \\
& v=\sqrt{\frac{2(95.75 \mathrm{Joules})}{30.0 \mathrm{~kg}}}=2.53 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- A 30.0 kg package is pushed with a constant force of 120. N through a distance of 0.800 m . The frictional force opposing the motion is 5.00 N What is the final velocity?
- Draw a sketch
- List known values; identify unknown
- Determine equation to use
- Plug in known values and solve
mage Credit: Openstax College Physics - Figure 7.4 CC BY 4.0

Summary

- Work is defined to be the product of the force on an object multiplied by the distance through which the force acts
- The kinetic energy is the energy an object has due to its motion
- The Work-Energy theorem relates the net work to the change in kinetic energy

