

Power Examples

• Sunlight

- •
- Only a small amount of this is retained by Earth
- Power => Energy transfer
 - Some energy is lost as thermal energy
- Coal power plant
 - Consumes 2500 megawatts to produce 1000 megawatts of electricity
 - 1500 megawatts lost as heat

Power Examples

	Object or Phenomenon	Power in Watts
	Supernova (at peak)	5×10 ³⁷
	Milky Way galaxy	1037
	Crab Nebula pulsar	10 ²⁸
	The Sun	4×10 ²⁶
	Volcanic eruption (maximum)	4×10^{15}
	Lightning bolt	2×10 ¹²
	Nuclear power plant (total electric and heat transfer)	3×10 ⁹
	Aircraft carrier (total useful and heat transfer)	108
	Dragster (total useful and heat transfer)	2×10^{6}
	Car (total useful and heat transfer)	8×10 ⁴
	Football player (total useful and heat transfer)	5×10^{3}
	Clothes dryer	4×10^{3}
	Person at rest (all heat transfer)	100
	Typical incandescent light bulb (total useful and heat transfer)	60
	Heart, person at rest (total useful and heat transfer)	8
	Electric clock	3
	Pocket calculator	10 ⁻³
Table Credit: OpenStax College Physics - Table 7.3 CC BY 4.0		

Summary

- Power is defined to be the rate at which work is done
- Energy conversion to power cannot be 100% efficient
- The amount of energy used is generally expressed in kilowatt-hours