

Example

- Calculate the power output for a 60.0 kg woman who runs up a 3.00 m flight of stairs in 3.50 s , starting from rest and having a final speed of $2.00 \mathrm{~m} / \mathrm{s}$.
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 7.23 CC By 4.0

Power

- Scientific definition of power
- The rate at which work is done
- SI units power: watt
- 1 Watt = 1 Joule/second

igure 7.22 This powerful rocket on the Space Shuttle Endeevor lid work
tate. (credit:

Example

- Calculate the power output for a 60.0 kg woman who runs up a 3.00 m flight of stairs in 3.50 s , starting from rest and having a final speed of $2.00 \mathrm{~m} / \mathrm{s}$.
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
mage Credit: Openstax College Physics - Figure 7.23 CC BY 40

Power Examples

- Sunlight
-
- Only a small amount of this is retained by Earth
- Power => Energy transfer
- Some energy is lost as thermal energy
- Coal power plant
- Consumes 2500 megawatts to produce 1000 megawatts of electricity
- 1500 megawatts lost as heat

Power and Energy Consumption

- Power consumption rate
-
- E is the energy supplied by the electric company
- Energy used is expressed in units of kilowatt-hours ()

Example

$P=0.200 \mathrm{~kW} ; t=(6.00 \mathrm{~h} / \mathrm{d})(30 \mathrm{~d})$;
rate $=\$ 0.120$ per $k W \cdot h r$

- What is the cost of running a 0.200 kW computer 6.00 h per day if the cost of

$$
E=P t
$$ electricity is $\$ 0.120$ per kW-h

- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
$E=(0.200 \mathrm{~kW})(6.00 \mathrm{~h} / \mathrm{d})(30.0 \mathrm{~d})$
$E=36.0 \mathrm{~kW} \cdot \mathrm{~h}$
Cost $=E \cdot r$
Cost $=(36.0 \mathrm{~kW} \cdot \mathrm{~h})(\$ 0.120$ per $\mathrm{kW} \cdot \mathrm{h})$ Cost $=\$ 4.32$ per month

Summary

- Power is defined to be the rate at which work is done
- Energy conversion to power cannot be 100% efficient
- The amount of energy used is generally expressed in kilowatt-hours

