Introduction to Physical Science

Temperature
Presented by Robert Wagner

Temperature

- Temperature to humans can be a matter of perception.
- If you place one hand in hot water and another hand in cold water. What happens when you place both hands in room temperature water?
- Scientifically, temperature is a measure of the average velocities of the particles in a substance
- This is what is measured with a thermometer

Linear Thermal Expansion

The change in length of a substance depends on the temperature, material and the length itself:
-

- is the coefficient of linear expansion

Coefficient of linear expansion

- Depends on the properties of the materials involved

Example

- Room temperature is generally considered to be about What would this be in ? In Kelvins?
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 13.6 CC BY 4.0

- Room temperature is generally considered to be about . What would this be in ? In Kelvins? - Draw a sketch - Identify known values - Identify equation - Enter values in the equation and solve	$\begin{aligned} T\left({ }^{\circ} C\right) & =25.0^{\circ} C \\ T\left({ }^{\circ} F\right) & =\frac{9}{5} T\left({ }^{\circ} C\right)+32 \\ T\left({ }^{o} F\right) & =\frac{9}{5}(25.0)+32=77.0^{\circ} F \\ T(K) & =T\left({ }^{\circ} C\right)+273.15 \\ T(K) & =25.0+273.15=298 K \end{aligned}$

Image Credit: Openstax College Physics - Figure 13.6 CC BY 4.0

Thermal Equilibrium

- If two systems, $A \& B$ are in thermal equilibrium with each other, and B is in thermal equilibrium with a third system, C, then A is also in thermal equilibrium with C.
- The Zeroth Law of Thermodynamics
- Heat will flow from hotter object to cooler objects, equalizing their temperatures.
- This is how a thermometer measures temperature

Image Credit: Openstax College Physics - Figure 8.8

Example

- The span of a bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from to
What is the change in length between these temperatures if the bridge is made of steel?
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example

- The span of a bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from What is the change in length between these temperatures if the bridge is made of steel?
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
$L=1275 m ; \Delta T=55^{\circ} \mathrm{C} ; \alpha($ steel $)=\frac{12 \times 10^{-6}}{{ }^{\circ} \mathrm{C}}$
$\Delta L=\alpha L \Delta T$
$\Delta L=\left(\frac{12 \times 10^{-6}}{{ }^{o} C}\right)(1275 \mathrm{~m})\left(55^{\circ} \mathrm{C}\right)$
$\Delta L=0.84 m$

Thermal Expansion in Two and Three
 Dimensions

- Two Dimensions:
- Three Dimensions
-
- is the coefficient of volume expansion

Example

- Suppose a 60.0 L steel gasoline tank is full. The gas and tank have a
temperature of $15.0^{\circ} \mathrm{C}$. How much gasoline will spill by the time they warm to $35.0^{\circ} \mathrm{C}$?
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve
$V=60.0 \mathrm{~L} ; \Delta T=20.0^{\circ} \mathrm{C} ; \beta($ steel $)=\frac{35 \times 10^{-6}}{{ }^{\circ} \mathrm{C}}$
$\beta($ gas $)=\frac{950 \times 10^{-6}}{{ }^{\circ} \mathrm{C}}$
$\Delta V_{s}=\beta_{s} \Delta T ; \Delta V_{g a s}=\beta_{g a s} V_{g a s} \Delta T$
$V_{\text {spill }}=\Delta V_{g a s}-\Delta V_{s} ; V_{\text {gas }}=V_{s}$
$V_{\text {spill }}=\left(\beta_{\text {gas }}-\beta_{s}\right) V \Delta T$
$V_{\text {spill }}=\frac{(950-35) \times 10^{-6}}{{ }^{\circ} \mathrm{C}}(60.0 \mathrm{~L})\left(20.0^{\circ} \mathrm{C}\right)=1.10 \mathrm{~L}$

Thermal Stress

- Thermal stress is caused by expansion and contraction as the temperature changes.
- Damage to roads - potholes
- Weathering of rocks
- Rupturing of tank
- Glass cooking pans
- Dental fillings

Summary

- Temperature is a measure of the average kinetic energies of the particle in a substance
- Objects in contact will reach thermal equilibrium as heat is transferred from a hotter object to a cooler one
- Thermal stress occurs when changes in temperature are rapid or when material in unable to expand and contract freely

