Introduction to Physical Science

Temperature Presented by Robert Wagner

Temperature

- Temperature to humans can be a matter of perception.
 - If you place one hand in hot water and another hand in cold water. What happens when you place both hands in room temperature water?
- Scientifically, temperature is a measure of the average velocities of the particles in a substance
 - · This is what is measured with a thermometer

Linear Thermal Expansion

- The change in length of a substance depends on the temperature, material and the length itself:
 - .
 - is the coefficient of linear expansion
- · Coefficient of linear expansion
 - Depends on the properties of the materials involved

Image Credit: OpenStax College Physics - Table 13.2 CC BY 4.0

Material	Coefficient of linear expansion a(1/*C)	Coefficient of volume expansion g(1/°C)
Solids		
Aluminum	25×10^{-6}	75×10^{-6}
Brass	19×10^{-6}	56 × 10 ⁻⁶
Copper	17×10 ⁻⁶	51×10 ⁻⁶
Gold	14×10^{-6}	42×10^{-6}
Iron or Steel	12×10^{-9}	35×10^{-6}
Invar (Nickel-iron alloy)	0.9×10^{-6}	2.7 × 10 ⁻⁶
Lead	29×10^{-6}	87×10^{-6}
Silver	18×10^{-6}	54 × 10 ⁻⁶
Glass (ordinary)	9×10^{-6}	27×10^{-6}
Glass (Pyreoth)	3×10 ⁻⁶	9×10 ⁻⁶
Quartz	0.4×10^{-6}	1×10^{-6}
Concrete, Brick	-12×10^{-6}	-36×10^{-6}
Marble (average)	7×10 ⁻⁶	2.1×10^{-5}
Liquids		
Ether		1650×10^{-6}
Ethyl alcohol		1100×10^{-6}
Petrol		950×10^{-6}
Glycerin		500×10^{-6}
Mercury		180×10^{-6}
Water		210×10 ⁻⁶
Gazes		
Air and most other gases at atmospheric pressure		3400×10^{-6}

Example

- Room temperature is generally considered to be about . What would this be in ? In Kelvins?
 - · Draw a sketch
 - Identify known values
 - Identify equation
 - · Enter values in the equation and solve

Figure 13.6 Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales, rounded to the nearest degree. The relative sizes of the

Image Credit: OpenStax College Physics - Figure 13.6 CC BY 4.0

Example

- · Room temperature is generally considered to be about . What would this be in ? In Kelvins?
 - Draw a sketch
 - · Identify known values
 - · Identify equation
 - · Enter values in the equation and solve

$$T(^{o}C) = 25.0^{o}C$$

$$T(^{o}F) = \frac{9}{5}T(^{o}C) + 32$$

$$T(^{o}F) = \frac{9}{5}(25.0) + 32 = 77.0^{o}F$$

$$T(K) = T({}^{o}C) + 273.15$$

$$T(K) = 25.0 + 273.15 = 298K$$

Image Credit: OpenStax College Physics - Figure 13.6 CC BY 4.0

Thermal Equilibrium

- If two systems, A & B are in thermal equilibrium with each other, and B is in thermal equilibrium with a third system, C, then A is also in thermal equilibrium with C.
 - The Zeroth Law of Thermodynamics
- · Heat will flow from hotter object to cooler objects, equalizing their temperatures.
 - This is how a thermometer measures temperature

Image Credit: OpenStax College Physics - Figure 8.8

Thermal Expansion

- Thermal expansion is related to the change in temperature
 - Greater temperature change means greater expansion
- · The amount of expansion also depends on the material
 - · Alcohol in a thermometer expands more than the glass

Image Credit: Ingolfson, Public domain, via Wikimedia Commons

Example

- The span of a bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from
- . What is the change in length between these temperatures if the bridge is made of steel?
- · Draw a sketch
- · Identify known values
- · Identify equation
- · Enter values in the equation and solve

Image Credit: Csman at Russian Wikipedia., CC BY 1.0 https://creativecommons.org/licenses/by/1.0, via Wikimedia Commons

Example

- The span of a bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from

 What is the change in length between these temperatures if the bridge is made of steel?
 - · Draw a sketch
 - · Identify known values
 - · Identify equation
 - Enter values in the equation and solve

$$L=1275~m~;~\Delta T=55^{o}C~;~\alpha(steel)=\frac{12x10^{-6}}{^{o}C}$$

$$\Delta L = \alpha L \Delta T$$

$$\Delta L = (\frac{12x10^{-6}}{{}^{o}C})(1275 \ m)(55^{o}C)$$

$$\Delta L = 0.84 \, m$$

Image Credit: Csman at Russian Wikipedia., CC BY 1.0 https://creativecommons.org/licenses/by/1.0, via Wikimedia Commons

Thermal Expansion in Two and Three Dimensions

- · Two Dimensions:
 - •
- · Three Dimensions
 - •
- is the coefficient of volume expansion

Example

- Suppose a 60.0 L steel gasoline tank is full. The gas and tank have a temperature of 15.0°C. How much gasoline will spill by the time they warm to 35.0°C?
 - · Draw a sketch
 - · Identify known values
 - · Identify equation
 - · Enter values in the equation and solve

$$V = 60.0 L; \ \Delta T = 20.0^{\circ}C; \ \beta(steel) = \frac{35x10^{-6}}{{}^{\circ}C}$$
$$\beta(gas) = \frac{950x10^{-6}}{{}^{\circ}C}$$

$$\Delta V_s = \beta_s \Delta T$$
; $\Delta V_{eas} = \beta_{eas} V_{eas} \Delta T$

$$V_{spill} = \Delta V_{gas} - \Delta V_s$$
; $V_{gas} = V_s$

$$V_{spill} = (\beta_{gas} - \beta_{s})V\Delta T$$

$$V_{spill} = \frac{(950 - 35)x10^{-6}}{{}^{o}C}(60.0 L)(20.0 {}^{o}C) = 1.10 L$$

Thermal Stress

- Thermal stress is caused by expansion and contraction as the temperature changes.
 - · Damage to roads potholes
 - · Weathering of rocks
 - Rupturing of tank
 - · Glass cooking pans
 - · Dental fillings

Image Credit: Miguel Tremblay - Public Domain - Wikimedia Commons

Summary

- Temperature is a measure of the average kinetic energies of the particle in a substance
- Objects in contact will reach thermal equilibrium as heat is transferred from a hotter object to a cooler one
- Thermal stress occurs when changes in temperature are rapid or when material in unable to expand and contract freely