Introduction to Physical Science
The Ideal Gas Law Presented by Robert Wagner

Behavior of Gases

- Composed of atoms and molecules
- Gases are easily compressed
- Particles are very spread out relative to their sizes
- Standard Temperature and Pressure (STP)
-

mage Credit: Openstax College Physics - Figure 13.17 CC BY 40

Example

- Calculate the number of molecules in a cubic meter of gas at STP (Standard temperature and pressure)
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example - Calculate the number of molecules in a cubic meter of gas at STP (Standard temperature and pressure) - Draw a sketch - Identify known values - Identify equation - Enter values in the equation and solve	$\begin{aligned} & T=0^{\circ} C(273 K) ; P=1.01 \times 10^{5} P a ; \\ & V=1.00 m^{3} ; k=1.38 \times 10^{-23} J / K \\ & P V=N k T \\ & N=\frac{P V}{k T} \\ & N=\frac{\left(1.01 \times 10^{5} P a\right)\left(1.00 \mathrm{~m}^{3}\right)}{\left(1.38 \times 10^{-23}(273 \mathrm{~K})\right.} \\ & N=2.68 \times 10^{25} \text { molecules } \end{aligned}$

Ideal Gas Law (moles)

- The Ideal Gas Law can be restated in terms of moles.
-
-
-
-

Image Credit: Openstax College Physics - Figure 8.8

Moles and Avogadro's Number

- Because the number of molecules is so large, we come up with another unit
- One mole is defined to be the number of atoms in exactly 12 graphs of carbon-12
- This is known as Avogadro's number ()
-
- For all gases there are how this is determined.
- see example 13.8 in the textbook for -

Example

- How many moles of gas are in a bike tire with a volume of
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Pierreselim, CC BY 3.0 < https://creativecommons.ory/licenses/by/3.0\%, via Wikimedia Commons

Example

- How many moles of gas are in a bike tire with a volume of pressure of , a temperature of ?
- Draw a sketch
- Identify known values

$P=7.00 \times 10^{5} \mathrm{~Pa} ; V=2.00 \times 10^{-3} \mathrm{~m}^{3}$ $T=18.0^{\circ} \mathrm{C}(291 \mathrm{~K}) ; R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$n=\frac{P V}{R T}$
$n=\frac{\left(7.00 \times 10^{5} \mathrm{~Pa}\right)\left(2.00 \times 10^{-3} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(291 \mathrm{~K})}$
$n=0.579 \mathrm{~mol}$
- Identify equation
- Enter values in the equation and solve

[^0]
Phase Diagrams

- Matter can be in the solid, liquid or gas phase
A phase diagram plots temperature and pressure
- Boundaries between phases
- Critical point - liquid phase no longer exists
- Triple point - all three phases exist
- Sublimation - phase change from solid to gas

Figure 13.28 The phase dilagram (PT graph) for
Figure 13.28 he phase diagram (Pr) graph) for
wateo Note tuat the exeses are onininear and the
 there are several ofther xoxicic phases of ice at
are Credit: Openstax College Physics. Figure 13.18 CC BY 40

Problem Solving Strategies

- Determine that an ideal gas is involved
- List the known values and convert to SI units
- Determine the unknown
- Which form of ideal gas law to use?
- Do you know molecules or moles?
- Manipulate the equation as needed to solve for unknown
- Substitute in known values
- Check to make sure the answer is reasonable

Summary

- The ideal gas law relates pressure, temperature and volume of an ideal gas
- Avogadro's number give the number of molecules in a specified quantity of matter
- A phase diagram shows at which temperatures and pressures the different phases will exist

[^0]:

