Introduction to Physical Science

Heat Capacity
Presented by Robert Wagner

Heat

- Heat is the spontaneous transfer of energy due to a temperature difference
- SI unit = Joule
- Heat is often measure in calories
- 1 calorie is the temperature needed to raise the temperature of 1.00 g of water by $1.00^{\circ} \mathrm{C}$
- More often used - kilocalorie
- This is what we call a Calorie when taking about food energy

Heat and Phase Changes

- When heat is added or removed from a system \rightarrow internal energy changes
- May increase/decrease temperature
- May involve a phase change

Temperature Change and Heat Capacity

- If there are no phase changes, the heat transfer depends on
- Change in temperature
- Mass of the system
- The substance and phase of the substance
.
- $\mathrm{c}=$ specific heat - amount of heat needed to raise the temperature of 1.00 kg by $1.00^{\circ} \mathrm{C}$.
- SI unit:

Also used:
Image Credit: Openstax College Physics - Figure 14.4 CC BY 4

Example

- An 0.500 kg aluminum pan is used to heat 0.250 liters of water from $20.0^{\circ} \mathrm{C}$ to $80.0^{\circ} \mathrm{C}$. How much heat is required?
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example

$m_{\text {pan }}=0.500 \mathrm{~kg} ; V_{\text {water }}=0.250 \mathrm{~L} ; \Delta T=60.0^{\circ} \mathrm{C}$ $c_{\text {water }}=4186 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} ; c_{A l}=900 . \mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ (See Table 14.1)
$m_{\text {water }}=V_{\text {water }} \cdot \rho_{\text {water }}=0.250 \mathrm{~L} \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3}=0.250 \mathrm{~kg}$
$Q_{w}=m_{w} c_{w} \Delta T$
$Q_{w}=(0.250 \mathrm{~kg})\left(4186 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)\left(60.0^{\circ} \mathrm{C}\right)=62.8 \mathrm{~kJ}$
$Q_{A l}=m_{A l} c_{A l} \Delta T$
$Q_{A l}=(0.500 \mathrm{~kg})\left(900 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(60.0^{\circ} \mathrm{C}\right)=27.0 \mathrm{~kJ}$
$Q_{\text {Total }}=Q_{w}+Q_{A l}=62.8 \mathrm{~kJ}+27.0 \mathrm{~kJ}=89.8 \mathrm{~kJ}$

Example

- Calculate the temperature increase of 100. Kg of brake material with an average specific heat of $800 . \mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$ if the material retains 10% of the energy from a 10,000 . kg truck descending 75.0 m at a constant speed
- Draw a sketch
- Identify known values
- Identify equation

- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 14.5 CC BY 4.0

Example

- Calculate the temperature increase of 100. Kg of brake material with an average specific heat of $800 . \mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$ if the material retains 10% of the energy from a 10,000. kg truck descending 75.0 m at a constant speed
- Draw a sketch
- Identify known values
- Identify equation
- Enter values in the equation and solve Image Credit: Openstax College Physics - Figure 14.5 CC BY 4.0

$m_{\text {truck }}=10000 . \mathrm{kg} ; h=75.0 \mathrm{~m}$;
$m_{\text {brake }}=100 . \mathrm{kg} ; c_{\text {brake }}=800 . \mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$
$P E=m_{\text {ruck }} g h=(10000 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(75.0 \mathrm{~m})$
$P E=7.35 \times 10^{6} \mathrm{~J}$
10% of $P E=7.35 \times 10^{5} \mathrm{~J}$
$Q=m c \Delta T$ or $\Delta T=\frac{Q}{m c}$
$\Delta T=\frac{7.35 \times 10^{5} \mathrm{~J}}{(100 . \mathrm{kg})\left(800 . \mathrm{J} / \mathrm{kg}^{o} \mathrm{C}\right)}$
$\Delta T=9.2^{\circ} \mathrm{C}$

Summary

- Heat is the spontaneous transfer of energy due to a temperature difference
- The Mechanical Equivalent of Heat relates energy in kilocalories to energy in Joules
- The heat capacity of a substance tells how much energy is needed to raise the temperature of a kilogram of a substance by a degree Celsius

