Introduction to Physical Science

Thermodynamics
Presented by Robert Wagner

First Law of Thermodynamics

- Change in internal energy of a system is equal to the net heat transfer into the system minus the net work done by the system
-
- Conservation of energy for a system in thermal equilibrium

Image Credit: Openstax College Physics - Figure 15.3 CC BY 4.0

Example

- There is a heat transfer of 40.00 J to a system, while the system does 10.0 J of work. Later, there is heat transfer of 25.00 J out of the system while 4.00 J of work is done on the system. What is the net change in internal energy of the system?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation

There is a heat transfer of 40.00 J to a system, while the system does 10.0 J of work. Later, there is heat transfer of 25.00 J out of the system while 4.00 J work is done on the system. What is the net change in internal energy of the system?

- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example

it: Openstax College Physics - Figure 15.4a CC BY 4.0

Heat Engine

- A device that uses heat energy to do work
- Car engine
- Steam turbines
- Work done depends on the path taken
- PV diagram
- Vertical paths - constant volume isochoric
- Horizontal paths - constant pressure isobaric.

mage Credit: Openstax College Physics- Figure 15.7 CC BY 4.

Heat Engine

- A device that uses heat energy to do work
- Car engine
- Steam turbines
- Work done depends on the path taken
- PV diagram
- Vertical paths - constant volume -
isochoric
- Horizontal paths - constant pressure -

Example

- Calculate the total work done in the cyclical path ABCDA shown here. Calculate the work done along each segment to get the total work.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 15.12 CC BY 4.0

Example

$P_{A B}=1.50 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; P_{C D}=2.00 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

- Calculate the total work done in the cyclical path ABCDA shown here. Calculate the work done along each segment to get the total work.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 15.12 CC BY 4.0
$\Delta V=500 . \mathrm{cm}^{3}=5.00 \times 10^{-4} \mathrm{~m}^{3}$
$W_{A B}=P_{A B} \Delta V_{A B}$
$W_{A B}^{A B}=\left(1.50 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left(5.00 \times 10^{-4} \mathrm{~m}^{3}\right)=750 . \mathrm{J}$
$W_{B C}=P_{B C} \Delta V_{B C}=0$
$W_{C D}=P_{C D} \Delta V_{C D}$
$W_{C D}=\left(2.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left(-5.00 \times 10^{-4} \mathrm{~m}^{3}\right)=-100 . \mathrm{J}$
$W_{D A}=P_{D A} \Delta V_{D A}=0$
$W=W_{A B}+W_{B C}+W_{C D}+W_{D A}=650 . J$

Reversible Processes

- Reversible process - the system and environment can return to their original states by following the reverse path
- When dissipative processes like friction or turbulence exist, a process cannot be reversible

Second Law of Thermodynamics

- Many process occur spontaneously in one direction only
- They are irreversible processes
- Heat will never transfer spontaneously from a cool object to a hot one
- Mechanical energy can be completely converted to thermal energy, but the reverse cannot occur
- Air will spread through a container, but not group in a corner

Credit: Openstax College Physics - Figure 15.16 CC By 4.0

Second Law of Thermodynamics (2)

- 1st Expression
- Heat transfer occurs spontaneously from higher to lower temperature bodies, but never spontaneously in the reverse direction.
- Heat Engines
- Want high efficiency
- 2nd expression
- It is impossible for any system for heat transfer from a reservoir to completely convert work in a cyclical process in which the system returns to its original state.

mage Credit: Openstax College Physics - Figure 15.17 CC BY 4.0

Cyclical Processes

- A cyclical process brings a system back to its original state at the end of each cycle.
-
- Conversion efficiency: ratio of what we get to what is input
- Efficiency can never be 1. Some energy is always lost

Image Credit: Openstax College Physics - Figure 15.17 CC BY 4.0

Example

- A coal power plant uses heat transfer from burning coal to turn turbines which generate electricity. Suppose in a single day, the station has $2.50 \times 10^{14} \mathrm{~J}$ heat transfer from coal and $1.48 \times 10^{14} \mathrm{~J}$ heat transfer into the environment. What is the work done by the power station? What is the efficiency of the power station?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation

- Enter values in the equation and solve
mage Credit: Openstax College Physics - Figure 15.17 CC BY 4.0

Example

- A coal power plant uses heat transfer from burning coal to turn turbines which generate electricity. Suppose in a single day, the station has $2.50 \times 10^{14} \mathrm{~J}$ heat transfer from coal and $1.48 \times 10^{14} \mathrm{~J}$ heat transfer into the environment. What is the work done by the power station? What is the efficiency of the power station?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve
$Q_{h}=2.50 \times 10^{14} \mathrm{~J} ; Q_{c}=1.48 \times 10^{14} \mathrm{~J}$
$W=Q_{h}-Q_{c}$
$W=2.50 \times 10^{14} \mathrm{~J}-1.48 \times 10^{14} \mathrm{~J}=1.02 \times 10^{14} \mathrm{~J}$
$E f f=\frac{W}{Q_{h}}$
$E f f=\frac{1.02 \times 10^{14} J}{2.50 \times 10^{14} J}=0.408=40.8 \%$

Summary

- 1st Law: Law of conservation of energy. Change in energy = energy in less the energy out
- Heat engines are devices that we use to do work on a system
- 2nd Law: A system can never convert heat to work with 100% efficiency

