Introduction to Physical Science

Simple Harmonic Motion Presented by Robert Wagner

Simple Harmonic Motion

- Net force can be described by Hooke's Law
- No damping - so no friction or other nonconservative forces
- Period of a simple harmonic oscillator
.
- Neither T nor f depends on the amplitude

Example

- Calculate the period and frequency of oscillation for a car if the total mass is $900 . \mathrm{kg}$ and the force constant of the suspension system is $6.53 \times 10^{4} \mathrm{~N} / \mathrm{m}$.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation

- Enter values in the equation and solve

Example

$$
\begin{aligned}
& m=900 . \mathrm{kg} ; k=6.53 \times 10^{4} \mathrm{~N} / \mathrm{m} \\
& f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{6.53 \times 10^{4} \mathrm{~N} / \mathrm{m}}{900 . \mathrm{kg}}} \\
& f=1.36 s^{-1}=1.36 \mathrm{~Hz} \\
& T=\frac{1}{f}=\frac{1}{1.356 \mathrm{~Hz}}=0.738 \mathrm{~s} \\
& \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sind thention (he wave sish trace } \\
& m=900 . \mathrm{kg} ; k=6.53 \times 10^{4} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

- Calculate the period and frequency of oscillation for a car if the total mass is 900. kg and the force constant of the suspension system is $6.53 \times 10^{4} \mathrm{~N} / \mathrm{m}$.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

A Simple Pendulum

- Common pendulums
- Clocks, swings, etc.
- Simple pendulum
- Small mass suspended from a light wire or string
- For small angles $\left(<15^{\circ}\right)$ - exhibits simple harmonic motion
- Restoring force:

- ;
mage Credit: Openstax College Physics - Figure 16.14 CC BY 4

Example

- What is the acceleration due to gravity in a region where a simple pendulum having a length of 75.000 cm has a period of 1.7357 s ?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation

- Enter values in the equation and solve

[^0]
A Simple Pendulum (2)

- Period of a pendulum
- Depends only on the pendulum length, NOT the mass!

age Credit: Openstax College Physics - Figure 16.14 CC BY 4

Example

- What is the acceleration due to gravity in a region where a simple pendulum having a length of 75.000 cm has a period of 1.7357 s ?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

$$
\begin{aligned}
& L=75.000 \mathrm{~cm}=0.75000 \mathrm{~m} ; T=1.7357 \mathrm{~s} \\
& T=2 \pi \sqrt{\frac{L}{g}} \\
& g=4 \pi^{2} \frac{L}{T^{2}} \\
& g=4 \pi^{2} \frac{0.75000 \mathrm{~m}}{(1.7357 \mathrm{~s})^{2}} \\
& g=9.8281 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

. Openstax College Physics - Figure 16.14 CC BY 4.0

Summary

- Simple harmonic motion occurs when the net restoring force can be described by Hooke's Law.
- The period of a simple harmonic oscillator has no dependence on amplitude
- A pendulum behaves as a simple harmonic oscillator for small displacements. The period is independent of the mass.

[^0]: Image Credit: Openstax College Physics - Figure 16.14 CC BY 4.0

