Introduction to Physical Science

Waves

Presented by Robert Wagner

Forced Oscillation

- Objects can be forced to oscillate by using a driving force at a specific frequency
 - Not how the object wishes to oscillate
 - Natural frequency How the system would oscillate if there were no driving or damping forces.
- Resonance
 - A system being driven at its natural frequency

low t low t

Image Credit: OpenStax College Physics - Figure 16.26 CC BY 4.0

Resonance

- Increase the amplitude of the wave by driving it at its natural frequency
 - Less damping => higher peak
- Examples
 - · Pushing a child on a swing
 - MRI Magnetic resonance Imaging
 - Tacoma Narrows bridge

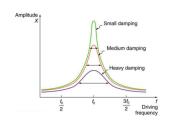


Image Credit: OpenStax College Physics - Figure 16.27 CC BY 4.0

Resonance

- Increase the amplitude of the wave by driving it at its natural frequency
 - Less damping => higher peak
- Examples
 - Pushing a child on a swing
 - MRI Magnetic resonance Imaging
 - Tacoma Narrows bridge

Image Credit: Barney Elliot, Public Domain, via Wikimedia Commons

Waves

- · What is a wave?
 - A disturbance that propagates from where it was created
 - · Water waves, sound waves, etc.
- · Wave velocity
 - The speed at which the disturbance moves

•

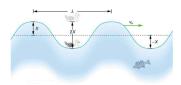


Figure 16.30 An idealized ocean wave passes under a sea gull that bobs up and down in simple harmonic motion. The wave has a wavelength \(\hat{A}\), which is the distance between adjacent identical parts of the wave. The up and down disturbance of the surface proposates parallel to the surface at a speed r...

Image Credit: OpenStax College Physics - Figure 16.30 CC BY 4.0

Example

Transverse and Longitudinal Waves

- Calculate the velocity of the ocean wave shown if the distance between crests is 10.0 m and the time for a seagull to bob up and down is 5.00 s.
 - Draw a sketch (if applicable)
 - Identify known values
 - Identify equation
 - · Enter values in the equation and solve

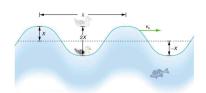
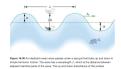



Figure 16.30 An idealized ocean wave passes under a sea guil that bobs up and down is a wavelength λ , which is the distance between adjacent identical parts of the wave. The up and down disturbance of the surface propagates parallel to the surface at a speed v_w .

Image Credit: OpenStax College Physics - Figure 16.14 CC BY 4.0

Example

- Calculate the velocity of the ocean wave shown if the distance between crests is 10.0 m and the time for a seagull to bob up and down is 5.00 s.
 - Draw a sketch (if applicable)
 - · Identify known values
 - Identify equation
 - Enter values in the equation and solve

 $\lambda = 10.0 m$; T = 5.00 s

$$f = \frac{1}{T} = \frac{1}{5.00 \, s} = 0.200 \, s^{-1}$$

 $v_w = f\lambda$

$$v_w = (0.200 \, s^{-1})(10.0 \, m)$$

 $v_w = 2.00 \, m/s$

• Transverse or shear wave

- Disturbance is perpendicular to the direction of motion
- · Longitudinal or compressional wave
 - The disturbance is parallel to the direction of propagation

Figure 16.31 In this example of a transverse wave, the wave propagates horizontally, and the disturbance in the cord is in the vertical direction.

Figure 16.32 In this example of a longitudinal wave, the wave propagates horizontally, and the disturbance in the cord is also in the horizontal direction.

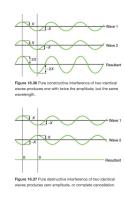

Image Credit: OpenStax College Physics - Figure 16.31 & 16.32 CC BY 4.0

Image Credit: OpenStax College Physics - Figure 16.14 CC BY 4.0

Superposition of Waves

- Waves superimpose upon one another when they arrive at the same point at the same time.
 - Amplitudes of the disturbances will add together
- · Constructive interference
 - · Waves reinforce each other
- · Destructive interference
 - · Waves cancel each other

Image Credit: OpenStax College Physics - Figure 16.36 & 16.37 CC BY 4.0

Superposition of Waves (2)

- Can be more complex may have some constructive and some destructive interference
- Example
 - · Wave pool

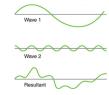


Figure 16.38 Superposition of not identical waves exhibits both constructive and destructive interference.

Image Credit: OpenStax College Physics - Figure 16.38 CC BY 4.0

Superposition of Waves (2)

- Can be more complex may have some constructive and some destructive interference
- Example
 - · Wave pool

Image Credit: kenhodge13, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Summary

- A natural frequency is the frequency at which a system would oscillate if there are no external forces or damping forces
- A wave is a disturbance that propagates away from the location at which it was created
- Waves will superimpose on each other reinforcing each other or canceling each other