Introduction to Physical

 ScienceElectric Circuits
Presented by Robert Wagner

Types of Circuits

- Circuits will generally have multiple components (resistors)
- Two basic combinations
- Series
- Parallel

(0)
mage Credit: Openstax College Physics- Figure 21.2 CC By 40

Example

- A battery with voltage 12.0 V , is applied through three resistances (in series):

What are the total resistance, current and total power dissipated.

- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Example

- A battery with voltage 12.0 V , is applied through three resistances (in series):

What are the total resistance, current and total power dissipated.

- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Credit: Onenstax Coleze

$V=12.0 \mathrm{~V} ; R_{1}=1.00 \Omega, R_{2}=6.00 \Omega, R_{3}=13.0 \Omega$
$R_{s}=R_{1}+R_{2}+R_{3}$
$R_{s}=1.00 \Omega+6.00 \Omega+13.0 \Omega=20.0 \Omega$
$I=\frac{V}{R_{s}}=\frac{12.0 \mathrm{~V}}{20.0 \Omega}=0.600 \mathrm{~A}$
$P=I V=(0.600 \mathrm{~A})(12.0 \mathrm{~V})=7.20 \mathrm{~W}$

Example

- A battery with voltage 12.0 V , is applied through three resistances (in series):

What is the voltage drop across each resistor?

- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve
$V=12.0 \mathrm{~V} ; R_{1}=1.00 \Omega, R_{2}=6.00 \Omega, R_{3}=13.0 \Omega$
$V_{1}=I R_{1}$
$V_{1}=(0.600 A)(1.0 \Omega)=0.600 \mathrm{~V}$
$V_{2}=I R_{2}$
$V_{2}=(0.600 \mathrm{~A})(6.0 \Omega)=3.60 \mathrm{~V}$
$V_{3}=I R_{3}$
$V_{3}=(0.600 A)(13.0 \Omega)=7.80 \mathrm{~V}$
$V_{1}+V_{2}+V_{3}=7.80 \mathrm{~V}+3.60 \mathrm{~V}+0.600 \mathrm{~V}=12.0 \mathrm{~V}$

Example

- A battery with voltage 12.0 V , is applied through three resistances (in parallel):

What are the total resistance, current and total power dissipated.

- Draw a sketch (if applicable)
- Identify known values

- Identify equation
- Enter values in the equation and solve

Example

$V=12.0 \mathrm{~V} ; R_{1}=1.00 \Omega, R_{2}=6.00 \Omega, R_{3}=13.0 \Omega$

- A battery with voltage 12.0 V , is applied through three resistances (in parallel):

What are the total resistance, total current and total power dissipated.

- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve
$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$
$\frac{1}{R_{p}}=\frac{1}{1.00 \Omega}+\frac{1}{6.00 \Omega}+\frac{1}{13.0 \Omega}$
$\frac{1}{R_{p}}=(1+0.167+0.0769) \frac{1}{\Omega}$
$\frac{1}{R_{p}}=1.2439 \frac{1}{\Omega}$ or, $R_{p}=0.804 \Omega$

Example

$V=12.0 \mathrm{~V} ; R_{1}=1.00 \Omega, R_{2}=6.00 \Omega, R_{3}=13.0 \Omega$

- A battery with voltage 12.0 V , is applied through three resistances (in parallel):

What are the total resistance, total current and total power dissipated.

- Draw a sketch (if applicable)
$R_{p}=0.804 \Omega$
$I=\frac{V}{R_{p}}=\frac{12.0 \mathrm{~V}}{0.804 \Omega}=14.9 \mathrm{~A}$
$P=I V=(14.9 A)(12.0 \mathrm{~V})=179 \mathrm{~W}$
- Identify known values
- Identify equation
- Enter values in the equation and solve
mage Credit: Openstax College Physics - Figure 21.4a CC BY 40

Combination Circuits

- We often have more complex circuits involving both series and parallel components.
- We can reduce these to a single equivalent resistance

Image Credit: Openstax College Physics - Figure 21.5 CC BY 4.0

Example

- For the circuit shown, find the total resistance, voltage drop across R_{1}, current through R_{2}, and power dissipated by R_{2}.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve
mage Credit: Openstax College Physics - Figure 21.6 CC BY 4.0
nase Creait: Openstax Corege Rysts- Figure 21.6 CC BY 4.

Example

- For the circuit shown, find the total resistance, voltage drop across R_{1}, current through R_{2}, and power dissipated by R_{2}.
- Draw a sketch (if applicable)
- Identify known values

- Identify equation
- Enter values in the equation and solve

$$
\begin{aligned}
& \frac{1}{R_{p}}=\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{6.00 \Omega}+\frac{1}{13.0 \Omega} \\
& \frac{1}{R_{p}}=0.2436 \frac{1}{\Omega} \\
& R_{p}=4.11 \Omega \\
& R_{\text {tot }}=R_{1}+R_{p}=1.00 \Omega+4.11 \Omega=5.11 \Omega
\end{aligned}
$$

Example

- For the circuit shown, find the total resistance, voltage drop across R_{1}, current through R_{2}, and power dissipated by R_{2}.
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Image Credit: Openstax College Physics - Figure 21.6 CC BY 4.0

Problem Solving Strategies

- Draw a circuit digram - label all resistors and voltage sources - this identifies your known values
- Identify unknowns
- Determine if the resistors are in series, parallel or a combination
- Reduce the problem in to steps considering how to handle series and parallel components
- Check to make sure answers are reasonable

Summary

- Electrical Circuits can involve resistors in series, parallel, or a combination of these two
- Resistors in series add directly and resistors in parallel add inversely
- Combination circuits are more complex and include both series and parallel components

