Introduction to Physical Science

Optics: Reflection \& Refraction Presented by Robert Wagner

Light as a Ray

- Light travels in straight lines - rays
- We do not see the wave nature of light when light interacts with everyday objects
- Geometric optics - describes how light changes direction when it interacts with matter

Law of Reflection

- We measure angles from the perpendicular to the surface at the point where light strikes
- Rough surface - rays are reflected in all directions - diffused
- Smooth surface - Light is reflected at specific angles
- Law of Reflection: The angle of reflection equals the angle of incidence

Image Credit: Openstax College Physics - Figure 25.6 CC BY 4.0

Law of Reflection

- We measure angles from the perpendicular to the surface at the point where light strikes
- Rough surface - rays are reflected in all directions - diffused
- Smooth surface - Light is reflected at specific angles
- Law of Reflection: The angle of reflection equals the angle of incidence

Law of Refraction

- Refraction: The changing of the direction of a light ray when it passes through variations in matter
- Can see multiple images of objects
- Light waves change direction when passing through different materials
- Light changes speed (c = speed of light in a vacuum)

mage Credit: Openstax College Physics - Figure 25.10 CC BY 4.0

The Speed of Light

- How to measure the speed of light?
- Early attempts - knew light moved extremely fast
- Roemer - Measured speed of light using Jupiter's moons (25\% error)
- Michelson - Measured using rotating mirrors and stationary mirror 35 km away (0.04\% error)
- Speed of light $(\mathrm{c})=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

Image Credit: Openstax College Physics - Figure 25.11 CC BY 4.0

Index of Refraction

- The speed of light through material will be less than the speed of light in a vacuum
. Index of refraction: , where
- The larger the index of refraction, the more light slows down in that material
- Air: $\mathrm{n}=1.000293$
- Diamond: $\mathrm{n}=2.419$

Example

$$
n_{\text {zircon }}=1.923(\text { Table 25.1) }
$$

- Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.
- Draw a sketch (if applicable)
- Identify known values
$n=\frac{c}{v} ; v=\frac{c}{n}$
$\nu=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.923}=1.56 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Identify equation
- Enter values in the equation and solve

Total Internal Reflection

- At a boundary, some light is reflected and some refracted
- The critical angle is the angle such that the angle of refraction is equal to 90 degrees

mage Credit: Openstax College Physics - Figure 25.13 CC BY 4.0

Law of Refraction

- Light rays will change direction when they pass from one medium to another
- It moves closer to the perpendicular when it slows down
- It moves away from he perpendicular when it speeds up

- Snell’s Law

Summary

- We can use geometric optics to describe what happens to light rays
- Law of reflection: Angle of reflection equals angle of incidence
- Law of refraction: Snell's law
- Total internal reflection occurs when the angle of the ray is greater than the critical angle

