

Flat Mirrors

- Law of reflection - angle of reflection equals angle of incidence
- Rays can be traced backwards and the image appears to be behind the mirror - a virtual image

Critit Openstax College Physics - Figure 25.40 CC BY 40

Concave Mirrors

- Spherical mirrors - light rays do not converge at the same point - no defined focal point
- Parabolic mirror - all light rays will converge at the focal point
- If a spherical mirror is small compared to its radius of curvature, it will behave like a parabolic mirror

Image Credit: Openstax College Physics - Figure 25.41 CC BY 4.0

Concave Mirrors (2)

. Power of a mirror:

. Focal length of a mirror:

- R is the radius of curvature of the mirror
- Smaller radius of curvature => smaller focal length => more powerful mirror

Convex Mirrors

- Focal point of a convex mirror is behind the mirror
- Focal length and power will both be negative - diverging mirror

Image Credit: Openstax College Physics - Figure 25.42 CC BY 4.0

Ray Tracing Rules

- A ray approaching a concave converging mirror paralle to its axis is reflected through the focal point on the
same side
- A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to come from the focal point behind the mirror
- Any ray striking the center of the mirror is followed by following the law of reflection

A ray approaching a concave converging mirror through its focal point is reflected parallel to its axis

- A ray approaching a convex diverging mirror by heading towards its focal point is reflected parallel to its axis

Image Credit: Openstax College Physics - Figure 25.43 CC BY 4.0

Example

$$
\begin{aligned}
& R=20.0 \mathrm{~m} \\
& f=\frac{R}{2}=\frac{20.0}{2}=10.0 \mathrm{~m} \\
& P=\frac{1}{f}=\frac{1}{10.0 \mathrm{~m}} \\
& P=0.100 \mathrm{~m}^{-1}=0.100 \mathrm{D}
\end{aligned}
$$

- A mirror has a radius of curvature of 20.0 m. What is the focal length and power of the telescope?
- Draw a sketch (if applicable)
- Identify known values
- Identify equation
- Enter values in the equation and solve

Ray Tracing Rules

- A ray approaching a concave converging mirror parallel to its axis is reflected through the focal point on the same side
- A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to come from the focal point behind the mirror
- Any ray striking the center of the mirror is followed by following the law of reflection
- A ray approaching a concave converging mirror through its focal point is reflected parallel to its axis
- A ray approaching a convex diverging mirror by heading

(a)

A ray approaching a convex diverging mirror by headin
towards its focal point is reflected parallel to its axis

Summary

- Flat mirror follow the law of reflection and form virtual images
- Concave converging mirrors have the focal point in front of the mirror. A convex diverging mirror has a focal point behind the mirror
- Ray tracing rules for mirror allow us to determine the location and size of the image formed.

