Introduction to Physical Science

Compounds and Nomenclature
Presented by Robert Wagner

Chemical Reactions

- In chemical reactions, the nucleus remains unchanged
- Electrons can be added, lost or shared with other atoms
- Ions electrically charged particles formed when atoms either gain or lose electrons.

Image Credit: Nauka, Public domain, via Wikimedia Commons

Anions and Cations

- Cations positive charge lose electrons
- Anions negative charge gain electrons
- Examples
 - Group 1 lose 1 electron
 - Group 2 lose 2 electrons
 - Group 17 gain 1 electron

Example

 An ion found in some compounds used as antiperspirants contains 13 protons and 10 electrons. What is its symbol? Known: contains 13 protons and 10 electrons

13 protons implies that the atomic number is 13

From the periodic table, this is Aluminum

Charge: 13 positive and 10 negative means a net charge of 3+

 Al^{3+}

Image Credit: OpenStax Chemistry - Figure 2.29 CC BY 4.0

Example

 Magnesium and nitrogen react to form an ionic compound. Predict which forms an anion, which forms a cation, and the charges of each ion. Write the symbol for each ion and name them. Known: Magnesium and nitrogen

Magnesium - group 2 (metal) - form positive ion (cation)

Mg - loses to electrons - charge 2+

Mg²⁺ Magnesium ion

Nitrogen - group 15 (nonmetal) - form negative ion (anion)

Nitrogen - gains 3 electrons - charge 3-

N³⁻ Nitride ion

Monatomic & Polyatomic Ions

- Monatomic ions formed from only one atom
- Polyatomic ions electrically charged molecules
- Oxyanions polyatomic ions that contain one or more oxygen atoms

Naming - Prefixes

- Suffixes:
 - -ate and -ite refer to ions containing more or fewer oxygen atoms
- Prefixes:
 - Per- means more oxygen atoms than -ate
 - Hypo- means fewer oxygen atoms than -ite
- Examples:

Perchlorate: ClO_4^-

Chlorate: ClO_3^-

Chlorite: ClO₂

Hypochlorite: ClO^-

Ionic and Covalent Bonds

- Ionic bonds electrons are transferred. Bonded by the electrostatic force
- Covalent (molecular) bonds electrons are shared. Bonded by forces between nuclei and the shared electrons

Ionic Compounds

 Generally forms between a nonmetal and a metal.

•

•

- Properties of ionic compounds
 - Solids
 - · Melt and boil at high temperatures
 - Molten conduct electricity

Example

Compounds: $Al^{3+} \& O^{2-}$

 $2 x A l^{3+} = 6$ positive charges

Need to match positive and negative

charge

 The gemstone sapphire is mostly a compound of aluminum and oxygen that contains aluminum cations,

 $3 \times O^{2-} = 6 \text{ negative charges}$ What Al_2O_3

, and oxygen anions, . What is the formula of this compound?

Example

Compounds: $Ca^{2+} \& H_2PO_4^-$

Need to match positive and negative charges

 $1 \times Ca^{2+} = 2$ positive charges

 $2 x H_2 PO_4^- =$ 2 negative charges

 $Ca(H_2PO_4)_2$

 Baking powder contains calcium dihydrogen phosphate, and ionic compound composed of the ions What is the formula of this compound?

Molecular Compounds

- Atoms are sharing rather than transferring electrons
 - Combination of nonmetals
- Properties of molecular compounds
 - · Liquids or gases
 - · Melt and boil at low temperatures
 - Non-conductive

Example

- Predict whether the following compounds are ionic or molecular:
 - the source of iodine in table salt
 - Hydrogen peroxide
 - Chloroform
 - Used in antidepressants

Compounds: KI, H₂O₂, CHCl₃, & Li₂CO₃

KI: Potassium(K) is a metal, Iodine(I) is a nonmetal - Ionic

 H_2O_2 : Hydrogen(H) is a nonmetal and Oxygen(O) is a nonmetal - Molecular

 $CHCl_3$: Carbon(C) is a nonmetal, Hydrogen(H) is a nonmetal, and Chlorine(Cl) is a nonmetal - Molecular

 Li_2CO_3 : Lithium(Li) is a metal, Carbonate(CO_3) is a polyatomic ion -

Naming - Ionic Compounds (Monatomic)

- Nomenclature collection of rules for naming things
- · Monatomic ions
 - Name of cation (metal)
 - Name of anion (nonmetal) using suffix -ide

me Ionic Compounds
Na ₂ O, sodium oxide
CdS, cadmium sulfide
Mg ₃ N ₂ , magnesium nitride
Ca ₃ P ₂ , calcium phosphide
Al ₄ C ₃ , aluminum carbide

Image Credit: OpenStax Chemistry - Table 2.7 CC BY 4.0

Naming - Ionic Compounds (Polyatomic)

Monatomic ions

· Name of cation

Name of anion

Image Credit: OpenStax Chemistry - Table 2.8 CC BY 4.0

	 ,
KC ₂ H ₃ O ₂ , potassium acetate	NH ₄ Cl, ammonium chloride
NaHCO ₃ , sodium bicarbonate	CaSO ₄ , calcium sulfate
Al ₂ (CO ₃) ₃ , aluminum carbonate	Mg ₃ (PO ₄) ₂ , magnesium phosphate

Table 2.

Names of Some Polyatomic Ionic Compounds

Naming - Metal Ions

- · Metal ions
 - Metal ion with charge in parentheses after the metal
 - Name of anion with -ide suffix

Compound	Name	
FeCl ₂	iron(II) chloride	
FeCl ₃	iron(III) chloride	
Hg ₂ O	mercury(I) oxide	
HgO	mercury(II) oxide	
SnF ₂	tin(II) fluoride	
SnF ₄	tin(IV) fluoride	

Image Credit: OpenStax Chemistry - Table 2.9 CC BY 4.0

Example

• Name the following ionic compounds:

Anions: S^{2-} , Se^{2-} , N^{3-} , & SO_4^{2-}

Cations: Fe^{3+} , Cu^{2+} , Ga^{3+} , & Ti^{3+}

1) Iron(III) Sulfide

2) Copper(II) Selenide

3) Gallium(III) Nitride

4) Titanium(III) Sulfate

Molecular (Covalent) Compounds

· Different ratios are possible (

> · Use prefixes to specify the number of atoms of each element

· Mono- is not included if the first element has only one atom

Nomenclature Prefixes			
Number	Prefix	Number	Prefix
1 (sometimes omitted)	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

Image Credit: OpenStax Chemistry - Table 2.10 CC BY 4.0

Molecular (Covalent) Compounds

Table 2.11

- Different ratios are possible (
 - Use prefixes to specify the number of atoms of each element
 - Mono- is not included if the first element has only one atom
- Exceptions (Nitrous oxide)

Image Credit: OpenStax Chemistry - Table 2.11 CC BY 4.0

Names of Some Molecular Compounds Composed of Two Elements

Compound	Name	Compound	Name
SO ₂	sulfur dioxide	BCl ₃	boron trichloride
SO ₃	sulfur trioxide	SF ₆	sulfur hexafluoride
NO ₂	nitrogen dioxide	PF ₅	phosphorus pentafluoride
N ₂ O ₄	dinitrogen tetroxide	P ₄ O ₁₀	tetraphosphorus decaoxide
N ₂ O ₅	dinitrogen pentoxide	IF ₇	iodine heptafluoride

Example

- Name the following ionic compounds:

- 1) Sulfur Hexafluoride
- 2) Dinitrogen Trioxide
- 3) Dichlorine Heptoxide
- 4) Tetraphosphorus Hexoxide

Binary Acids

- Consists of hydrogen and one nonmetallic element
 - Hydrogen is changed to hydro-
 - The nonmetallic element name adds the -ic suffix
 - The word acid is added

Image Credit: OpenStax Chemistry - Table 2.12 CC BY 4.0

	Names of Some Simple Acids
Name of Gas	Name of Acid
HF(g), hydrogen fluoride	HF(aq), hydrofluoric acid
HCl(g), hydrogen chloride	HCl(aq), hydrochloric acid
HBr(g), hydrogen bromide	HBr(aq), hydrobromic acid
HI(g), hydrogen iodide	HI(aq), hydroiodic acid
H ₂ S(g), hydrogen sulfide	H₂S(aq), hydrosulfuric acid

Summary

- Ionic compounds are formed when electrons are transferred between atoms
- Molecular (covalent) compounds are formed when electrons are shared between atoms
- Naming conventions for compounds vary depending on the specific types of bonds and the compounds

Oxyacids

Formula

- Contain hydrogen, oxygen and at least one other element
 - Omit hydrogen
 - Start with root name of anion
 - Replace -ate with -ic or -ite with -ous
 - · Add "acid"

 HC₂H₃O₂
 acetate
 acetic acid

 HNO₃
 nitrate
 nitric acid

 HNO₂
 nitrite
 nitrous acid

 HClO₄
 perchlorate
 perchloric acid

Names of Common Oxyacids

Acid Name

 HNO_2 nitrite nitrous acid $HCIO_4$ perchlorate perchloric acid H_2CO_3 carbonate carbonic acid H_2SO_4 sulfate sulfuric acid H_2SO_3 sulfate sulfuric acid H_2SO_3 phosphate phosphoric acid

Anion Name

Table 2.13

Image Credit: OpenStax Chemistry - Table 2.13 CC BY 4.0