Introduction to Physical

 ScienceFormula Mass and the Mole Concept Presented by Robert Wagner

Example

C: 13 atoms $\times 12.01 \mathrm{amu}$
H: 18 atoms $\times 1.008 \mathrm{amu}$
$0: 2$ atoms $\times 16.00 \mathrm{amu}$
C: 156.13 amu
: 18.144 amu

- What is the formula mass of ibuprofen ()?
$156.13 \mathrm{amu}+18.144 \mathrm{amu}+32.00 \mathrm{amu}$ $=206.27 \mathrm{amu}$

Formula Mass

- Sum of the average atomic masses of the component atoms
- Covalent substances
- Formula represents the number and type of atoms making a single molecule

- Molecular mass
mage Credit: Openstax Chemistry. Figure 32 CC BY 4.0

Formula Mass (2)

- Sum of the average atomic masses of the component atoms
- Ionic substances
- Sum the average atomic masses of all atoms in the
 compound's formula
- NOT a molecular mass

Image Credit: Openstax Chemistry - Figure 3.4 CC BY 4.0

Example

- What is the formula mass of Aluminum sulfate (

Rewrite : $A l_{2} S_{3} O_{12}$
Al: 2 atoms $\times 26.98 \mathrm{amu}$
S: 3 atoms $\times 32.06 \mathrm{amu}$
: 12 atoms $\times 16.00 \mathrm{amu}$

A: 53.96 amu
: 96.18 amu
0: 192.00 amu
$53.96 \mathrm{amu}+96.18 \mathrm{amu}+192.00 \mathrm{amu}$ $=342.14 \mathrm{amu}$

The Mole

- A mole of a substance is the amount in which there are 6.022×10^{23} discrete entities (atoms or molecules)
- Avogadro's Number: $6.022 \times 10^{23}=$
- One mole of any element contains the same number of atoms as a mole of any other atom
- Molar mass: Mass in grams of one mole of a substance

Example

$m=4.7 \mathrm{~g} \mathrm{~K}$
Molar mass of potassium $=39.10 \mathrm{~g} / \mathrm{mol}$

$$
4.7 \mathrm{~g} K\left(\frac{\mathrm{~mol} K}{39.10 \mathrm{~g} K}\right)
$$

- Moles from grams: Nutritional guidelines for potassium are 4.7 g day/ What would this be in moles?
$=0.12 \mathrm{~mol} \mathrm{~K}$

Example

- Grams from moles: If a liter of air contains $9.2 \times 10^{-4} \mathrm{~mol}$ Ar. What is the mass of Ar in one liter of air?
moles : $9.2 \times 10^{-4} \mathrm{~mol}$ argon
Molar mass of argon $=39.95 \mathrm{~g} / \mathrm{mol}$
$9.2 \times 10^{-4} \mathrm{~mol} \mathrm{Ar}\left(\frac{39.95 \mathrm{~g} \mathrm{Ar}}{\mathrm{mol} \mathrm{Ar}}\right)$
$=0.037 \mathrm{~g} \mathrm{Ar}$

Percent Composition

- Percent composition:
- The percentage by mass of each element in the compound
- Example: a compound of hydrogen and carbon
-

Example

Find molar mass
C: $2 \times 12.01=24.02 \mathrm{~g} / \mathrm{mol}$ glycine
C: $2 \times 12.01=24.02 \mathrm{~g} / \mathrm{mol}$ glycine
0: $2 \times 16.00=32.00 \mathrm{~g} / \mathrm{mol}$ glycine
$\mathrm{N}: 1 \times 14.007=14.007 \mathrm{~g} / \mathrm{mol}$ glycine

- Moles from grams: How many moles of glycine molecules are contained in 28.35 g of glycine (
)?
$24.02+5.040+32.00+14.007=75.07 \mathrm{~g} /$ mol glycine
28.35 g glycine $\left(\frac{\text { mol glycine }}{75.07 \text { g glycine }}\right)$
$=0.378$ mol glycine

Example

$7.34 \mathrm{gC} ; 1.85 \mathrm{gH} ; 2.85 \mathrm{~g} \mathrm{~N}$
$\% C=\frac{7.34 \mathrm{~g} \mathrm{C}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=61.0 \%$

- A 12.04g sample of a liquid is found to contain $7.34 \mathrm{gC}, 1.85 \mathrm{~g} \mathrm{H}$, and 2.85 g N . What is the percent composition of the compound
$\% H=\frac{1.85 \mathrm{~g} \mathrm{H}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=15.4 \%$
$\% N=\frac{2.85 \mathrm{~g} \mathrm{~N}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=23.7 \%$

Percent Composition from Formula

- Can use the molecular or empirical formula to determine percent composition
- Example: ; Molecular weight: $\mathrm{N}: 1 \times 14.01$ amu and H 3 $x 1.008 \mathrm{amu}=17.03 \mathrm{amu}$
-
-

Summary

- The formula mass is the sum of the masses of the individual atoms composing a compound
- One mole is defined to be the amount of a substance containing 6.022×10^{23} atoms/molecules
- The molar mass of an atom or compound is numerically equal to the the atomic or formula weight in amu

Example

- What is the percent composition of aspirin ()?
olar mass: C: $9 \times 12.01=108.09$; H: $8 \times$ $1.008=8.064 ; 0: 4 \times 16.00=64.00=$ $180.154 \mathrm{~g} / \mathrm{mol}$
$\% C=\frac{108.09 \mathrm{~g} / \mathrm{mol}}{180.154 \mathrm{~g} / \mathrm{mol}} x 100 \%=60.00 \% \mathrm{C}$
$\% H=\frac{8.064 \mathrm{~g} / \mathrm{mol}}{180.154 \mathrm{~g} / \mathrm{mol}} x 100 \%=4.476 \% \mathrm{H}$
$\% O=\frac{64.00 \mathrm{~g} / \mathrm{mol}}{180.154 \mathrm{~g} / \mathrm{mol}} x 100 \%=35.52 \% \mathrm{O}$

