Introduction to Physical Science

Molarity
Presented by Robert Wagner

Solutions

- A solution is a homogeneous mixture
- Concentration
- Relative amount of a given component of the solution
- Solvent
- Component of solution that has a vastly greater quantity than other components (aqueous solution - dissolved in water)
- Solute
- Component of the solution that is a much lower quantity
- Dilute - low concentration
- Concentrated - high concentration

Example

$V=355 m L=0.355 L$
0.133 mol sucrose

$$
M=\frac{\text { mol solute }}{L \text { solution }}=\frac{0.133 \mathrm{~mol}}{0.355 \mathrm{~L}}
$$

A 355 mL soft drink contains 0.133 mol of sucrose. What is the molar concentration of sucrose in the beverage?

Example

$M=0.375 M ; V=10 m L=0.01 L$
$M=\frac{\text { mol solute }}{L \text { solution }}$

- How many moles of sugar are contained in a sip (10 mL) of the soft drink from the previous example?
mol solute $=M \times L$ solution
mol solute $=0.375 \frac{\text { mol sugar }}{L} \times 0.01 L$
mol solute $=0.004$ mol sugar

Example

$V=0.500 L ; m=25.2 \mathrm{~g}$
C: $2 \times 12.01 ; \mathrm{O}: 2 \times 16.00 ; \mathrm{H}: 4 \times 1.008$ $24.02+32.00+4.032=60.052 \mathrm{~g} / \mathrm{mol}$

- White vinegar is acetic acid
() in water. A 0.500 L
vinegar solution contains 25.2 g of acetic acid. What is the molarity of the solution?
$M=\frac{\text { mol solute }}{L \text { solution }}$
$M=\frac{25.2 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Hx} \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{60.052 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}}{0.500 \mathrm{~L} \text { solution }}$
$M=0.839 M$

Example

$$
V=0.250 L ; M=5.30 M
$$

$M=\frac{\text { mol solute }}{L \text { solution }} ;$ mol solute $=M \times L$ solution

- How many grams of NaCl are contained in 0.250 L of a 5.30 M solution?
mol solute $=5.30 \frac{\frac{\mathrm{~mol} \mathrm{NaCl}}{L}}{L} 0.250 \mathrm{~L}=1.325 \mathrm{molNaCl}$
Na: 1×22.99; CI: 1×35.45
Formula mass $=58.44$
$1.325 \mathrm{~mol} \mathrm{NaCl} x \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{\mathrm{mol} \mathrm{NaCl}}=77.4 \mathrm{~g} \mathrm{NaCl}$

Example

$m=75.6 g ; M=0.839 M$
g solute $x \frac{\text { mol solute }}{g \text { solute }}=$ mol solute

- The molarity of an acetic acid solution is 0.839 M . What volume of vinegar contains 756 g of acetic acid?
mol solute $x \frac{L \text { solution }}{\text { mol solute }}=L$ solution
g solute $x \frac{\text { mol solute }}{g \text { solute }} x \frac{L \text { solution }}{m o l \text { solute }}=L$ solution
$75.6 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} x \frac{\mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{60.05 \mathrm{~g}} \times \frac{\mathrm{L} \text { solution }}{0.839 \text { mol CH}_{3} \mathrm{CO}_{2} \mathrm{H}}$
1.50 L solution

Dilution of solutions

- Dilution occurs when more solvent is added, lowering the concentration of the solution
- Dilution equation
-
- C = concentration ; V = volume

Example

$$
C_{1}=5.00 \mathrm{M} ; V_{1}=0.850 L ; V_{2}=1.80 \mathrm{~L}
$$

- If 0.850 L of a 5.00 M solution of

$$
C_{1} V_{1}=C_{2} V_{2}
$$ copper nitrate () is diluted to a volume of 1.80 L by the addition of water, what is the molarity of the diluted solution?

$C_{2}=\frac{C_{1} V_{1}}{V_{2}}$
$C_{2}=\frac{5.00 \frac{\mathrm{~mol}}{\mathrm{~L}}}{1.80 \mathrm{~L}}=2.36 \mathrm{M}$

Example

$$
\begin{aligned}
& V_{1}=11 \mathrm{~mL}=0.011 \mathrm{~L} \\
& C_{1}=0.45 \mathrm{M} ; C_{2}=0.12 \mathrm{M} \\
& C_{1} V_{1}=C_{2} V_{2} \\
& V_{2}=\frac{C_{1} V_{1}}{C_{2}} \\
& V_{2}=\frac{(0.45 \mathrm{M})(0.011 \mathrm{~L})}{(0.12 \mathrm{M})}=0.041 \mathrm{~L}
\end{aligned}
$$

- What volume of 0.12 M HBr can be prepared from 11 mL of 0.45 M HBr ?

Example

- What volume of 1.59 M KOH is required to prepare 5.00 L of 0.100 M KOH ?

$$
\begin{aligned}
& V_{2}=5.00 \mathrm{~L} ; C_{2}=0.100 \mathrm{M} ; C_{1}=1.59 \mathrm{M} \\
& C_{1} V_{1}=C_{2} V_{2} \\
& V_{1}=\frac{C_{2} V_{2}}{C_{1}} \\
& V_{1}=\frac{(0.100 \mathrm{M})(5.00 \mathrm{~L})}{(1.59 \mathrm{M})}=0.314 \mathrm{~L}
\end{aligned}
$$

Summary

- The relative amount of a given solution component is called its concentration
- The solvent has the significantly greater concentration ; the solute has a much smaller concentration
- The molarity of a solution is the number of moles of the solute in one liter of the solution

