Introduction to Physical Science

Classifying Chemical Reactions Presented by Robert Wagner

Types of Chemical Reactions

- · Precipitation Reaction
 - · Dissolved substances react to form solids
- · Acid-Base Reaction
 - The hydrogen ion () is transferred from one chemical species to another
- · Oxidation-Reduction Reaction
 - Reaction involving transfer of electrons

Precipitation Reactions

- Solubility
 - Maximum concentration of a substance that can be achieved
- Soluble
 - · A substance that has a high solubility
- Insoluble
 - · A substance with a low solubility
- Precipitate
 - Occurs when the concentration exceeds the solubility

Solubility Table

 Soluble compounds are less likely to precipitate than insoluble compounds

Suitable Ionis Compounds	contain these ions	exceptions
	NH ₄ * group I cations: U* Nm* K* Rb* Gs*	none
	Gr Br	compounds with Ag*, Hgy ²⁺ , and Pb ²⁺
	P	compounds with group 2 metal cations, Ptr2+, Fe3+, and Ag+
	CIN ₀ . HCO ³ . C ⁵ H ³ O ⁵ .	none
	80 ₄ 2-	compounds with Ag*, Ba ²⁺ , Ca ²⁺ , Hg ₂ ²⁺ , Pb ²⁺ and Sr ²⁺
Insoluble Ionic Compounds	contain these ions	exceptions
	COg ² - CrOg ² - POg ³ - S ² -	compounds with group 1 oatlons and NH, $^{\circ}$
	OH	compounds with group 1 cations and Ba ²⁺

Image Credit: OpenStax Chemistry - Table 4.1 CC BY 4.0

Example

• Mixture of potassium iodide () and lead Nitrate (

Net Equation:

Image Credit: Der Kreole, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons

Example

Ions Formed:

 Ag^{+} ; NO_{3}^{-} ; Na^{+} ; F^{-}

Other compounds that can form:

• Mixing silver nitrate () and sodium fluoride (

NaNO3 & AgF

Review solubility guidelines

 $NaF(aq) + AgNO_3(aq) \longrightarrow AgF(s) + NaNO_3(aq)$

Or,

 $Ag^{+}(aq) + F^{-}(aq) \longrightarrow AgF(s)$

Examples

• Determine the precipitate for each of the following reactions. Write the net ionic equation

• Potassium Sulfate & Barium Nitrate

· Lithium Chloride & Silver Acetate

 $K_2SO_4 + Ba(NO_3)_2 \longrightarrow 2KNO_3 + BaSO_4$

BaSO₄ is insoluble

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$

 $LiCl + AgC_2H_3O_2 \longrightarrow AgCl + LiC_2H_3O_2$

AgCl is insoluble

 $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$

Acid-Base Reactions

- In these reactions, a hydrogen ion is transferred
 - An acid is a substance that will give hvdronium ions () when dissolved in water
- Example:

- Strong acid All of the compound dissociates
- Weak acid only some of the compound dissociates

Image Credit: OpenStax Chemistry - Figure 4.5 CC BY 4.0

Acid-Base Reactions

- · In these reactions, a hydrogen ion is transferred
 - A base is a substance that yields hydroxide ions () when dissolved in water
- Example:

•

- Strong base All of the compound dissociates
- Weak base only some of the compound dissociates
- Ex:

Neutralization Reaction

· An acid and a base react together to produce a salt and water

•

• Example:

•

• Salt - magnesium chloride

Example

 $HOCl(aq) + H_2O(l) \Rightarrow ?$ $HOCl(aq) + H_2O(l) \Rightarrow OCl^-(aq) + H_3O^+$

- Write balanced equations for the acid-base reactions described:
 - Weak acid hydrogen hypochlorite reacts with water
 - A solution of barium hydroxide is neutralized with a solution of nitric acid

 $Ba(OH)_2(aq) + HNO_3(aq) \longrightarrow ?$ $Ba(OH)_2(aq) + 2HNO_3(aq) \longrightarrow Ba(NO_3)_2(aq) + 2H_2O(1)$

Oxidation-Reduction Reactions

- Oxidation-reduction reactions (redox)
 - · Oxidation loss of electrons
 - · Reduction gain of electrons
 - · Reducing agent species that is oxidized
 - · Oxidizing agent species that is reduced

Oxidation Number

- Oxidation number or oxidation state:
 - Oxidation number of an atom in an elemental substance is zero
 - · Oxidation number of a monatomic ion is equal to the ion's charge
 - Oxidation numbers for common non-metals
 - Hydrogen: +1 when combined with nonmetals, -1 when combined with metals
 - · Oxygen: -2 in most compounds
 - Halogens: -1 for Fluorine (always) Generally -1 for other halogens
 - Sum of oxidation numbers in a molecule is equal to the charge on the molecule or ion

Summary

- Three types of reactions: Precipitation, Acid-Base, & Oxidation-Reduction
- The solubility of a substance tells how much of it can remain dissolved under specific circumstances
- · Acids give hydronium ions in water; bases give hydroxide ions
- · Oxidation is a loss of electrons while reduction is a gaining of electrons

Example

· Assign oxidation numbers to the

following:

 H_2S : H has oxidation number of +1

Charge on $H_2S = 0$

2 hydrogens: oxidation of +2

0 = +2 + ?; Oxidation of S must be -2

 SO_3^{2-} : O has an oxidation number of -2

Charge on SO_3^{2-} is -2

-2 = -2(3) + ?

-2 = -6 + ?

Oxidation of S must be +4