Introduction to Physical

 ScienceClassifying Chemical Reactions Presented by Robert Wagner

Types of Chemical Reactions

- Precipitation Reaction
- Dissolved substances react to form solids
- Acid-Base Reaction
- The hydrogen ion () is transferred from one chemical species to another
- Oxidation-Reduction Reaction
- Reaction involving transfer of electrons

Example

- Mixture of potassium iodide () and lead Nitrate ()
.
- Net Equation:
-

Example

Ions Formed:

$\mathrm{Ag}^{+} ; \mathrm{NO}_{3}^{-} ; \mathrm{Na}^{+} ; \mathrm{F}^{-}$
Other compounds that can form:

- Mixing silver nitrate (
) and sodium fluoride ()
$\mathrm{NaNO}_{3} \& \mathrm{AgF}$
Review solubility guidelines
$\mathrm{NaF}(a q)+\mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{AgF}(s)+\mathrm{NaNO}_{3}(a q)$
Or,
$A g^{+}(a q)+F^{-}(a q) \longrightarrow A g F(s)$

Examples

- Determine the precipitate for each of the following reactions. Write the net ionic equation
- Potassium Sulfate \& Barium Nitrate
- Lithium Chloride \& Silver Acetate

AgCl is insoluble
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})$

Acid-Base Reactions

- In these reactions, a hydrogen ion is transferred
- An acid is a substance that will give hydronium ions () when dissolved in water
- Example:
-
- Strong acid - All of the compound dissociates
- Weak acid - only some of the compound dissociates

Acid-Base Reactions

- In these reactions, a hydrogen ion is transferred
- A base is a substance that yields hydroxide ions () when dissolved in water
- Example:
- Strong base - All of the compound dissociates
- Weak base - only some of the compound dissociates
- Ex:

Example

$$
\begin{aligned}
& \mathrm{HOCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons ? \\
& \mathrm{HOCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

- Write balanced equations for the acid-base reactions described:
- Weak acid hydrogen hypochlorite reacts with water
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow$?
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- A solution of barium hydroxide is neutralized with a solution of nitric acid

Neutralization Reaction

- An acid and a base react together to produce a salt and water
-
- Example:
- Salt - magnesium chloride

Oxidation-Reduction Reactions

- Oxidation-reduction reactions (redox)
- Oxidation - loss of electrons
- Reduction - gain of electrons
- Reducing agent - species that is oxidized
- Oxidizing agent - species that is reduced

Oxidation Number

- Oxidation number or oxidation state:
- Oxidation number of an atom in an elemental substance is zero
- Oxidation number of a monatomic ion is equal to the ion's charge
- Oxidation numbers for common non-metals
- Hydrogen: +1 when combined with nonmetals, -1 when combined with metals
- Oxygen: -2 in most compounds
- Halogens: -1 for Fluorine (always) Generally -1 for other halogens
- Sum of oxidation numbers in a molecule is equal to the charge on the molecule or ion

Summary

- Three types of reactions: Precipitation, Acid-Base, \& Oxidation-Reduction
- The solubility of a substance tells how much of it can remain dissolved under specific circumstances
- Acids give hydronium ions in water ; bases give hydroxide ions
- Oxidation is a loss of electrons while reduction is a gaining of electrons

Example

- Assign oxidation numbers to the following:
-
-

$\mathrm{H}_{2} \mathrm{~S}$: H has oxidation number of +
Charge on $\mathrm{H}_{2} \mathrm{~S}=0$
2 hydrogens: oxidation of +2
$0=+2+$? ; Oxidation of S must be -2
SO_{3}^{2-} : 0 has an oxidation number of -2
Charge on SO_{3}^{2-} is - 2
$2=-2(3)+$?
$2=-6+$?
Oxidation of S must be +4

