Introduction to Physical Science
Quantum Theory
Presented by Robert Wagner

Electrons as Waves

- Electrons sent through slits create an interference pattern
- Electrons have a dual nature

Image Credit: Openstax Chemistry - Figure 6.18 CC BY 4.0

Wave Nature of Particles

- Macroscopic particle has a well-defined momentum ($\mathrm{p}=\mathrm{mv}$)
- Microscopic world - follow different rules than those for macroscopic objects
- Light behaves like a particle ; Can an electron behave like a wave
- de Broglie wavelength - electron behaves like a wave

-

Image Credit: Openstax College Physics - Figure 6.17 CC BY 4.0

Example

$$
\begin{aligned}
& v=1.000 \times 10^{7} \mathrm{~m} / \mathrm{s} ; m=9.109 \times 10^{-28} g \\
& \lambda=\frac{h}{m v} \\
& \lambda=\frac{6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.00 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)} \\
& \lambda=7.274 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

Heisenberg Uncertainty Principle

- How accurately can we measure the properties of an electron (or other particle)?
- A limit to how accurately we can measure the position and momentum of an electron simultaneously.
-
- Not significant for macroscopic objects
- Gives and ultimate limit on what can be known in science

Principal Quantum Number

- Principal quantum number (shell number)
- Location of energy level
- Energy levels $\mathrm{n}=1,2,3$,..
- Secondary quantum number (angular momentum)
- Levels: l=0,1,2,..,n-1
- Orbitals: $\mathrm{l}=0$ are s orbitals ; $\mathrm{l}=$ 1 are p orbitals ; $l=2$ are d orbitals ; f, g, \& h for l=3,4,\&5

mage Credit: Openstax Chemistry- Figure 6.19 CC BY 4.0

Quantum Numbers

- Principal quantum number (shell number)
- Location of energy level
- Energy levels $n=1,2,3, \ldots$
- Secondary quantum number (angular momentum)
- Levels: $\mathrm{l}=0,1,2, \ldots, \mathrm{n}-1$
- Orbitals: $\mathrm{l}=0$ are s orbitals ; l = 1 are p orbitals ; $\mathrm{l}=2$ are d orbitals ; f, g, \& h for $\mathrm{l}=3,4, \& 5$

Quantum Numbers (2)

- Magnetic quantum number
- Spatial orientation of the orbital
- Number of orbitals: $21+1$
- Principal quantum number: General value of electron energy
- Secondary quantum number: Shape of the orbital
- Magnetic quantum number: Orientation of orbital in space

Orbital Energies

- Orbital is labeled by its principal quantum number and secondary quantum number
- Spin quantum number
- Electron can have spin "up" or spin "down

Orbital Energies

- Orbital is labeled by its principal quantum number and secondary quantum number
- Spin quantum number
- Electron can have spin "up" or spin "down"

mage Credit: Openstax Chemistry - Figure 6.23 CC BY 4.0

Example

$n=2 ; n=5$
$\mathrm{n}=2$ has four orbitals: one 2 s orbital and $32 p$ orbitals. Two electrons per orbital means 8 electrons

- How many electrons can occupy a shell with $n=2 ? n=5$?
$\mathrm{n}=5$ has 25 orbitals: one 5 s orbits, thre 5 p orbitals, five 5 d orbitals, seven 5 f orbitals, nine 5 g orbitals. Two electron per orbital means 50 electrons in the shell.

Example

- Complete the table for atomic orbitals.
- n = primary quantum number
- l = secondary quantum number (s,p,d,f,...)
- $m_{l}=2 l+1$

Summary

- Electrons (and other particles) have been found to behave like waves much as light can behave like a particle
- The uncertainty principle limits how accurately we can know the position and momentum of a particle simultaneously
- Four quantum numbers specify the state of an electron within an atom

