Introduction to Physical Science

Solubility
Presented by Robert Wagner

Solubility

- Solubility of a solute
- Maximum concentration of solute in a specific solvent under specific conditions
- Saturated vs. unsaturated
- Saturated - concentration of solute is equal to its solubility
- Unsaturated - concentration of solute is less than the solubility
- Supersaturated - concentration of solute exceeds the solubility

Solutions of Gases in Liquids

- Gas solubility typically decreases as temperature increases
- Example - increased water
temperatures means decreases oxygen solubility
- Henry's Law:
-
- = solubility of gas
- = partial pressure of gas

mage Credit: Openstax Chemistry - Figure 11.8 CC BY 4.0

Solutions of Gases in Liquids

- Gas solubility typically decreases as temperature increases
- Example - increased water temperatures means decreases oxygen solubility
- Henry's Law:
-
- = solubility of gas

- = partial pressure of gas

Image Credit: Openstax Chemistry - Figure 11.96 (Modification of work by U.S. Fish and Willlife Service) CC BY 4.0

Example

- At $20^{\circ} \mathrm{C}$, the concentration of dissolved oxygen exposed to gaseous oxygen at a partial pressure of 101.3 kPa is $1.38 \times 10^{-3} \mathrm{molL}^{-1}$. Use Henry's Law to determine the solubility when the partial pressure is 20.7 kPa .
$C_{g}=1.38 \times 10^{-3} \mathrm{molL}^{-1} ; P_{g}=101.3 \mathrm{kPa}$
$C_{g}=k P_{g}$
$k=\frac{C_{g}}{P_{g}}=\frac{1.38 \times 10^{-3} \mathrm{molL}^{-1}}{101.3 \mathrm{kPa}}$
$k=1.36 \times 10^{-5} \mathrm{molL}^{-1} \mathrm{kPa}^{-1}$
$C_{g}=k P_{g}=\left(1.36 x 10^{-5} \mathrm{molL}^{-1} \mathrm{kPa}^{-1}\right)(20.7 \mathrm{kPa})$
$C_{g}=2.82 \times 10^{-4} \mathrm{molL}^{-1}$

Example

$C_{g}=1.2 \times 10^{-3} \mathrm{molL}^{-1} ; P_{g}=0.17 \mathrm{~atm}$

- A certain species of freshwater trout requires a dissolved oxygen concentration of 7.5 mg / L. Could these fish thrive in a polluted stream (water temp $=30.0^{\circ} \mathrm{C}$, partial pressure of oxygen $=0.17$ atm
- Figure 11.8 shows that the solubility at this
temperature is 1.2×10^{-3} mol/L
$C_{g}=k P_{g}$
$k=\frac{C_{g}}{P_{g}}=\frac{1.2 \times 10^{-3} \mathrm{molL}^{-1}}{1 \mathrm{~atm}}$
$k=1.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~atm}^{-1}$
$C_{g}=k P_{g}=\left(1.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~atm}^{-1}\right)(0.17 \mathrm{~atm})$
$C_{g}=2.0 \times 10^{-4} \mathrm{molL}^{-1}$
$C_{g}=\left(2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)(32.0 \mathrm{~g} / \mathrm{mol})(1000 \mathrm{mg} / \mathrm{g})=6.4 \mathrm{mg} / \mathrm{L}$

Solutions of Liquids in Liquids

- Miscible - liquids that can be mixed in any proportion with each other
- Ex: Ethanol, sulfuric acid, ethylene glycol
- Immiscible - Liquids that do not mix significantly
- Ex: Oil, gasoline, benzene
- Partially miscible - Liquids that partially mix together

[^0]
Solutions of Liquids in Liquids

- Miscible - liquids that can be mixed in any proportion with each other
- Ex: Ethanol, sulfuric acid, ethylene glycol
- Immiscible - Liquids that do not mix significantly
- Ex: Oil, gasoline, benzene
- Partially miscible - Liquids that partially mix together

Image Credit: yortw, CC BY 2.0 _https://creativecommons.org/licenses/by/2.03, via Flick

Solutions of Liquids in Liquids

- Miscible - liquids that can be mixed in any proportion with each other
- Ex: Ethanol, sulfuric acid, ethylene glycol
- Immiscible - Liquids that do not mix significantly
- Ex: Oil, gasoline, benzene
- Partially miscible - Liquids that partially mix together

Solutions of Solids in Liquids

- Solubility generally increases with temperature
- Supersaturated solutions
- Prepare at a higher temperature and then cool off
- Remain stable until:
- Seed crystal added
- Mechanical agitation

Image Credit: Openstax Chemistry - Figure 11.16 CC BY 4.0

Solutions of Solids in Liquids

- Solubility generally increases with temperature
- Supersaturated solutions
- Prepare at a higher temperature and then cool off
- Remain stable until:
- Seed crystal added
- Mechanical agitation

Image Credit: Velela (Pulic Domain) via wikimedia Commons

Summary

- The solubility is the maximum amount of a solute that can be dissolved in a solution
- Henry's Law allows us to calculate the solubility of gases in liquids
- Liquids can be miscible, immiscible or partially miscible

[^0]: Image Credit: dno1967, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

