Introduction to Physical Science

Acids & Bases, pH Presented by Robert Wagner

Acids and Bases

- Defined in terms of the transfer of hydrogen ions
 - · A compound that donates a proton to another is an acid
 - A compound that accepts a proton from another is a base
- Neutral solution equal concentration of hydronium and hydroxide ions
- Acidic solution greater concentration of hydronium than hydroxide
- Basic solution lesser concentration of hydronium than hydroxide

pH and pOH

- The pH of a solution is the molar concentration of the hydronium
 () in the solution
 - •
 - •
- The pOH of a solution is similarly defined
 - •
 - •

Example

• What are the pH and pOH of pure water? The hydronium ion molarity in pure water is 1.0×10^{-7} at 25° C.

$$pH = -\log[H_3O^+]$$

 $pH = -\log(1.0x10^{-7}) = +7.0$
 $pOH = -\log[OH^-]$

 $[H_3O^+] = [OH^-] = 1.0x10^{-7}M$

$$pOH = -\log(1.0x10^{-7}) = +7.0$$

Acids, Bases and Neutral Solutions

Summary of Relations for Acidic, Basic and Neutral Solutions

Classification	Relative Ion Concentrations	pH at 25 °C
acidic	[H ₃ O ⁺] > [OH ⁻]	pH < 7
neutral	$[H_3O^+] = [OH^-]$	pH = 7
basic	[H ₃ O ⁺] < [OH ⁻]	pH > 7

Table 14.1

Image Credit: OpenStax Chemistry Table 14.1 CC BY 4.0

Acids, Bases and Neutral Solutions

• Calculate the hydronium ion

7.3.

concentration of blood with a pH of

Example

$$[H_3O^+] = 1.2x10^{-3}M$$

$$pH = -\log[H_3O^+]$$

• What is the pH of stomach acid, a solution of HCl with a hydronium concentration of 1.2x10⁻³M?

$$[H_3O^+] = 1.2x10^{-3}M$$

pH = 7.3

 $pH = -\log[H_3O^+] = 7.3$

 $log[H_3O^+] = -7.3$

 $[H_3O^+] = 10^{-7.3}$

 $[H_3O^+] = 5.0x10^{-8}M$

Example

 $pH = -log(1.2x10^{-3}) = +2.92$

Example

 What are the pOH and the pH of a 0.0125 M solution of potassium hydroxide (KOH)?

$$[OH^{-}] = 0.0125$$

 $pOH = -log[OH^{-}] = -log0.0125$
 $pOH = -(-1.903) = 1.903$
 $pH + pOH = 14.00$
 $pH = 14.00 - pOH$
 $pH = 14.00 - 1.903 = 12.1$

Measuring pH

- pH can often be measured with devices like a pH meter
- pH test strips can also be used to give a rough idea of the acid/base level of a solution

Image Credit: Laurence Livermore, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Measuring pH

- pH can often be measured with devices like a pH meter
- pH test strips can also be used to give a rough idea of the acid/base level of a solution

Summary

- An acid is a compound that donates a proton to another compound
- The pH of a substance is a measure of the concentration of the hydronium ion
- The pH and pOH of substances can be calculated and/or measured by various methods

Image Credit: Robert Wagner (own work) CC-BY-4.0