Introduction to Physical

 ScienceAcids \& Bases, pH
Presented by Robert Wagner

pH and pOH

- The pH of a solution is the molar concentration of the hydronium
() in the solution
-
-
- The pOH of a solution is similarly defined
-
-

Acids and Bases

- Defined in terms of the transfer of hydrogen ions
- A compound that donates a proton to another is an acid
- A compound that accepts a proton from another is a base
- Neutral solution - equal concentration of hydronium and hydroxide ions
- Acidic solution - greater concentration of hydronium than hydroxide
- Basic solution - lesser concentration of hydronium than hydroxide

Example

What are the pH and pOH of pure water? The hydronium ion molarity in pure water is 1.0×10^{-7} at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}} \\
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=-\log \left(1.0 \times 10^{-7}\right)=+7.0 \\
& p O H=-\log \left[\mathrm{OH}^{-}\right] \\
& p O H=-\log \left(1.0 \times 10^{-7}\right)=+7.0
\end{aligned}
$$

Acids, Bases and Neutral Solutions

Summary of Relations for Acidic, Basic and Neutral Solutions		
Classification	Relative Ion Concentrations	pH at $25^{\circ} \mathrm{C}$
acidic	$\left[\mathrm{H}_{3} \mathrm{O}^{+} \gg\right.$ [OH^{-}]	pH < 7
neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	$\mathrm{pH}=7$
basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+} \ll\left[\mathrm{OH}^{-}\right]\right.$	$\mathrm{pH}>7$

Image Credit: Openstax Chemistry Table 14.1 CC BY 4.0

Example

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2 \times 10^{-3} \mathrm{M}} \\
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=-\log \left(1.2 \times 10^{-3}\right)=+2.92
\end{aligned}
$$

- What is the pH of stomach acid, a solution of HCl with a hydronium concentration of $1.2 \times 10^{-3} \mathrm{M}$?

Example

Example

$$
\left[\mathrm{OH}^{-}\right]=0.0125
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.0125
$$

- What are the pOH and the pH of a 0.0125 M solution of potassium hydroxide (KOH) ?
$p O H=-(-1.903)=1.903$
$p H+p O H=14.00$
$p H=14.00-p O H$
$p H=14.00-1.903=12.1$

Measuring pH

- pH can often be measured with devices like a pH meter
- pH test strips can also be used to give a rough idea of the acid/base level of a solution

Summary

- An acid is a compound that donates a proton to another compound
- The pH of a substance is a measure of the concentration of the hydronium ion
- The pH and pOH of substances can be calculated and/or measured by various methods

