Introduction to Physical Science
Strengths of Acids \& Bases Presented by Robert Wagner

Percent Ionization

- Percent ionization of a weak acid is given by -

Weak and Strong Acids and Bases

- Strength of acid or base depends on the level of ionization in water
- Weak acid or base - little ionization
- Strong acid or base ionization essentially complete

${ }^{6}$ Strong Acids			6 Strong Bases	
HClO_{4}	perchloric acid	LiOH	litium hydroxide	
HCl	hydrochloric acid	NaOH	sodium hydroxide	
HBr	hydrobromic acid	KOH	potassium hydroxide	
HI	hydroiodic acid	$\mathrm{Ca}(\mathrm{OH})_{2}$	calcium hydroxide	
HNO_{3}	nitric acid	$\mathrm{Sr}(\mathrm{OH})_{2}$	strontum hydroxide	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid	$\mathrm{Ba}\left(\mathrm{OH} \mathrm{H}_{2}\right.$	barium hydroxide	

Image Credit: OpenStax Chemistry Figure 14.6 CC BY 4.0

Example

- Calculate the percent ionization of an 0.125 M solution of nitrous acid, with a pH of 2.09.

$$
\begin{aligned}
& p H=2.09 ; 0.125 \mathrm{M} \text { solution } \\
& \% \text { ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{e q}}{\left[\mathrm{HNO}_{2}\right]_{0}} x 100 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.09}=0.0081 \mathrm{M}} \\
& \frac{0.0081}{0.125} \times 100=6.5 \%
\end{aligned}
$$

Binary Acids and Bases

- Strength of acid compounds of hydrogen with nonmetals:
- Increases to the right on the periodic table
- Increases downward on the periodic table

Summary

- The strength of an acid or base depends on the level to which it is ionized in water
- The percent ionization tells the amount of a weak acid that has been ionized
- Binary acids - strength will increase downward and to the right in the periodic table

