

Types of Radioactive Decay (Chart)

Example

- How long will it take 20g of Cobalt-60 (Half-life = 5.27 years) to decay into 5g?
- How much would be left if we wait the same additional amount of time after the first decay from 20g -> 5g?
- When would the ratio of daughter to parent by about 5:1?

20g of C	o-60;	Half-life=	5.27	years
----------	-------	------------	------	-------

Time	Parent	Daughter	Ratio	
0 yr	20g	Og	0	
5.27 yr	10g	10g	1:1	
10.54 yr	5g	15g	3:1	
15.81 yr	2.5g	17.5g	7:1	
21.08 yr	1.25g	18.75g	15:1	
26.35 yr	0.625g	19.375g	31:1	

Radiometric Dating

- Can use this to determine ages of objects that contain radioactive materials
- Carbon-14 dating

.

- Carbon-14 forms in the atmosphere from the interaction of nitrogen with cosmic rays
- Carbon-14 is incorporated into living organisms as the carbon
 - Decays with a half-life of 5730 years

Image Credit: OpenStax Chemistry Figure 21.11 CC BY 4.0

1	100g of K-40 :	: Half-	-life= 1	25 billion	vears
 A moon rock is found to have a Ar-40:K-40 ratio of 11:1. Approximately how old is the rock? Start with 100g of K-40. 	Half- lives Ti 0 0 1 1.25 2 2.50 3 3.75 4 5.00 5 6.25	ime yr 5 Gyr 0 Gyr 5 Gyr 0 Gyr 5 Gyr	Parent 100g 50g 25g 12.5g 6.25g 3.125g	Daughter Og 50g 75g 87.5g 93.75g 96.875g	Ratio 0 1:1 3:1 7:1 15:1 31:1
A r Ap ro: Sta	moon rock is found to have a -40:K-40 ratio of 11:1. proximately how old is the ck? art with 100g of K-40.	100g of K-40moon rock is found to have a-40:K-40 ratio of 11:1.oproximately how old is theck?art with 100g of K-40.	100g of K-40 ; Half moon rock is found to have a -40:K-40 ratio of 11:1. oproximately how old is the ck? art with 100g of K-40. 4 5 6.25 Gyr	100g of K-40 ; Half-life= 1.moon rock is found to have a -40:K-40 ratio of 11:1. $\overline{1}$ 1.25 Gyr $\overline{50g}$ proximately how old is the ck?2 2.50 Gyr $25g$ art with 100g of K-40.3 3.75 Gyr $12.5g$ 4 5.00 Gyr 6.25 Gyr $3.125g$	100g of K-40 ; Half-life= 1.25 billion 100g of K-40 ; Half-life= 1.25 billion 100g of K-40 ; Half-life= 1.25 billion 11 1.25 Gyr 11 1.25 Gyr 50g 11 1.25 Gyr 50g 12 2.50 Gyr 25g 13 3.75 Gyr 12.5g 14 5.00 Gyr 6.25g 15 6.25 Gyr 3.125g 15 6.25 Gyr 3.125g

Summary

- Radioactive nuclei will spontaneously decay into to other nuclei
- We considered five different types of radioactive decay (alpha, beta, gamma, electron capture, & positron emission)
- Radioactive materials have half-lives which can be used to determine ages of objects