Introduction to Physical Science

Nuclear Energy Presented by Robert Wagner

Nuclear Transmutation

- · The conversion of one nuclide to another
- Example:
 - .
- Requires very high energies
 - Particle accelerators can be used

Transuranium Elements

- Uranium (Z=92) is the heaviest naturally occurring element
 - · Heavier elements can be produced artificially
- Bombard uranium-238 with neutrons:

•

Decays

Half life = 23.5min

Half life = 2.36 days

Transuranium Elements (2)

Preparation of Some of the Transuranium Elements

Name	Symbol	Atomic Number	Reaction
americium	Am	95	$^{239}_{94}$ Pu + $^{1}_{0}$ n \longrightarrow $^{240}_{93}$ Am + $^{0}_{-1}$ e
curium	Cm	96	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\longrightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n
californium	Cf	98	$^{242}_{96}Cm + {^4_2}He \ \longrightarrow \ ^{245}_{98}Cf + {^1_0}n$
einsteinium	Es	99	$^{238}_{92}U + 15^{1}_{0}n \longrightarrow ^{253}_{99}Es + 7^{0}_{-1}e$
mendelevium	Md	101	$^{253}_{99}$ Es + 4_2 He $\longrightarrow ^{256}_{101}$ Md + 1_0 n
nobelium	No	102	$^{246}_{96}Cm + ^{12}_{6}C \longrightarrow ^{254}_{102}No + 4^1_0n$
rutherfordium	Rf	104	$^{249}_{98}Cf + ^{12}_{6}C \ \longrightarrow \ ^{257}_{104}Rf + 4^1_0n$
seaborgium	Sg	106	$\begin{array}{c} ^{205}{\rm Pb} + ^{54}_{24}{\rm Cr} \longrightarrow ^{257}_{106}{\rm Sg} + 3^1_0{\rm n} \\ \\ ^{249}{\rm Cf} + ^{18}_{8}{\rm O} \longrightarrow ^{263}_{108}{\rm Sg} + 4^1_0{\rm n} \end{array}$
meitnerium	Mt	107	$^{209}_{83} Bi + ^{58}_{26} Fe \ \longrightarrow \ ^{266}_{109} Mt + ^{1}_{0} n$

Image Credit: OpenStax Chemistry Table 21.3 CC BY 4.0

Nuclear Fission

- Heavier elements can decompose into more stable elements with lower masses
 - Usually does not occur naturally
 - · Bombardment with neutrons

• Mass difference between products and reactants yields energy

Image Credit: OpenStax Chemistry Figure 21.14 CC BY 4.0

Critical Mass

- Free neutrons are produced in a fission reaction
 - These can cause fission of other nuclei
- Fissile or fissionable material is material that is capable of sustaining a nuclear chain reaction
- · A critics mass of material is needed
 - Number of neutrons produced exceeds the number of neutrons absorbed

Image Credit: OpenStax Chemistry Figure 21.16 CC BY 4.0

Critical Mass

- Free neutrons are produced in a fission reaction
 - These can cause fission of other nuclei
- Fissile or fissionable material is material that is capable of sustaining a nuclear chain reaction
- · A critics mass of material is needed
 - Number of neutrons produced exceeds the number of neutrons absorbed

Image Credit: OpenStax Chemistry Figure 21.17 CC BY 4.0

Fission Reactors

- · Controllable chain reactions
- Nuclear fuel
 - Example: Uranium-235 (<1% of naturally occurring)
 - Enriched to 5% or so
 - · Allows a chain reaction
 - Does not allow for a supercritical mass - no explosion
- Control rods absorb neutrons to control rate of reaction

Image Credit: Emoscopes, CC BY 2.5 http://creativecommons.org/licenses/by/2.5/, via Wikimedia Commons

Fusion Reactions

- Converting light nuclei into heavier nuclei
- Energy source of our Sun

•

• The mass difference is converted to energy:

•

- Requires very high temperatures
 - 10-15 million Kelvin
- Nuclear weapon Hydrogen bomb
- Nuclear power need a way to contain the material magnetic fields? Focused laser beams? Current research is ongoing...

Summary

- The transmutation of elements can produce energy
- Nuclear fission splits heavier elements into lighter ones
- Nuclear fusion combines lighter elements into heavier ones