5.2: Dissipation of Energy and Thermal Energy

From all the foregoing, it is clear that when an interaction can be completely described by a potential energy function we can define a quantity, which we have called the total mechanical energy of the system, \(E_{mech} = K + U \), that is constant throughout the interaction. However, we already know from our study of inelastic collisions that this is rarely the case. Essential to the concept of potential energy is the idea of “storage and retrieval” of the kinetic energy of the system during the interaction process. When kinetic energy simply disappears from the system and does not come back, a full description of the process in terms of a potential energy is not possible.

Processes in which some amount of mechanical energy disappears (that is, it cannot be found anywhere anymore as either macroscopic kinetic or potential energy) are called dissipative. Mysterious as they may appear at first sight, there is actually a simple, intuitive explanation for them. All macroscopic systems consist of a great number of small parts that enjoy, at the microscopic level, some degree of independence from each other and from the body to which they belong. Macroscopic motion of an object requires all these parts to move together as a whole, at least on average; however, a collision with another object may very well “rattle” all these parts and leave them in a more or less disorganized state. If the total energy is conserved, then after the collision the object’s atoms or molecules may be, on average, vibrating faster or banging against each other more often than before, but they will do so in random directions, so this increased “agitation” will not be perceived as macroscopic motion of the object as a whole.

This kind of random agitation at the microscopic level that I have just introduced is what we know today as thermal energy, and it is by far the most common “sink” or reservoir where macroscopic mechanical energy is “dissipated.” In our example of an inelastic collision, the energy the objects had is not gone from the universe, in fact it is still right there inside the objects themselves; it is just in a disorganized or incoherent state from which, as you can imagine, it would be pretty much impossible to retrieve it, since we would have to somehow get all the randomly-moving parts to get back to moving in the same direction again.
We will have a lot more to say about thermal energy in a later chapter, but for the moment you may want to think of it as essentially *noise*: it is what is left (the residual motional or configurational energy, at the microscopic level) after you remove the average, macroscopically-observable kinetic or potential energy. So, for example, for a solid object moving with a velocity \(v_{cm}\), the kinetic part of its thermal energy would be the sum of the kinetic energies of all its microscopic parts, calculated *in its center of mass* (or zero-momentum) *reference frame*; that way you remove from every molecule’s velocity the quantity \(v_{cm}\), which they all must have in common—on average (since the body as a whole is moving with that velocity).\(^6\)

In order to establish conservation of energy as a fact (which was one of the greatest scientific triumphs of the 19th century) it was clearly necessary to show experimentally that a certain amount of mechanical energy lost always resulted in the same predictable increase in the system’s thermal energy. Thermal energy is largely “invisible” at the macroscopic level, but we detect it indirectly through an object’s *temperature*. The crucial experiments to establish what at the time was called the “mechanical equivalent of heat” were carried out by James Prescott Joule in the 1850’s, and required exceedingly precise measurements of temperature (in fact, getting the experiments done was only half the struggle; the other half was getting the scientific establishment to believe that he could measure changes in temperature so accurately!)

\(^6\)Note that thermal energy is not necessarily just kinetic; it may have a configurational component to it as well. For example, imagine a collection of vibrating diatomic molecules. You may think of each one as two atoms connected by a spring. The length of the “spring” at rest determines the molecule’s nominal *chemical energy*; thermal vibrations cause this length to change, resulting in a net increase in energy that—as for two masses connected by a spring—has both a kinetic and a configurational (or “potential”) component.