10.3: The Massive Atmosphere of Venus

Learning Objectives

By the end of this section, you will be able to:

• Describe the general composition and structure of the atmosphere on Venus
• Explain how the greenhouse effect has led to high temperatures on Venus

The thick atmosphere of Venus produces the high surface temperature and shrouds the surface in a perpetual red twilight. Sunlight does not penetrate directly through the heavy clouds, but the surface is fairly well lit by diffuse light (about the same as the light on Earth under a heavy overcast). The weather at the bottom of this deep atmosphere remains perpetually hot and dry, with calm winds. Because of the heavy blanket of clouds and atmosphere, one spot on the surface of Venus is similar to any other as far as weather is concerned.

Composition and Structure of the Atmosphere

The most abundant gas on Venus is carbon dioxide (\(\text{CO}_2\)), which accounts for 96% of the atmosphere. The second most common gas is nitrogen. The predominance of carbon dioxide over nitrogen is not surprising when you recall that Earth’s atmosphere would also be mostly carbon dioxide if this gas were not locked up in marine sediments (see the discussion of Earth’s atmosphere in Earth as a Planet).

Table \(\PageIndex{1}\) compares the compositions of the atmospheres of Venus, Mars, and Earth. Expressed in this way, as percentages, the proportions of the major gases are very similar for Venus and Mars, but in total quantity, their atmospheres are dramatically different. With its surface pressure of 90 bars, the venusian atmosphere is more than 10,000 times more
massive than its martian counterpart. Overall, the atmosphere of Venus is very dry; the absence of water is one of the important ways that Venus differs from Earth.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Earth</th>
<th>Venus</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (CO(_2))</td>
<td>0.03%</td>
<td>96%</td>
<td>95.3%</td>
</tr>
<tr>
<td>Nitrogen (N(_2))</td>
<td>78.1%</td>
<td>3.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>0.93%</td>
<td>0.006%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Oxygen (O(_2))</td>
<td>21.0%</td>
<td>0.003%</td>
<td>0.15%</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>0.002%</td>
<td>0.001%</td>
<td>0.0003%</td>
</tr>
</tbody>
</table>

The atmosphere of Venus has a huge troposphere (region of convection) that extends up to at least 50 kilometers above the surface (Figure \(\PageIndex{1}\)). Within the troposphere, the gas is heated from below and circulates slowly, rising near the equator and descending over the poles. Being at the base of the atmosphere of Venus is something like being a kilometer or more below the ocean surface on Earth. There, the mass of water evens out temperature variations and results in a uniform environment—the same effect the thick atmosphere has on Venus.

![Venus' Atmosphere](image)

In the upper troposphere, between 30 and 60 kilometers above the surface, a thick cloud layer is composed primarily of sulfuric acid droplets. Sulfuric acid (\(H_2SO_4\)) is formed from the chemical combination of sulfur dioxide (\(SO_2\)) and water (\(H_2O\)). In the atmosphere of Earth, sulfur dioxide is one of the primary gases emitted by volcanoes, but it is
quickly diluted and washed out by rainfall. In the dry atmosphere of Venus, this unpleasant substance is apparently stable. Below 30 kilometers, the Venus atmosphere is clear of clouds.

Surface Temperature on Venus

The high surface temperature of Venus was discovered by radio astronomers in the late 1950s and confirmed by the Mariner and Venera probes. How can our neighbor planet be so hot? Although Venus is somewhat closer to the Sun than is Earth, its surface is hundreds of degrees hotter than you would expect from the extra sunlight it receives. Scientists wondered what could be heating the surface of Venus to a temperature above 700 K. The answer turned out to be the greenhouse effect.

The greenhouse effect works on Venus just as it does on Earth, but since Venus has so much more \(\text{CO}_2\)—almost a million times more—the effect is much stronger. The thick \(\text{CO}_2\) acts as a blanket, making it very difficult for the infrared (heat) radiation from the ground to get back into space. As a result, the surface heats up. The energy balance is only restored when the planet is radiating as much energy as it receives from the Sun, but this can happen only when the temperature of the lower atmosphere is very high. One way of thinking of greenhouse heating is that it must raise the surface temperature of Venus until this energy balance is achieved.

Has Venus always had such a massive atmosphere and high surface temperature, or might it have evolved to such conditions from a climate that was once more nearly earthlike? The answer to this question is of particular interest to us as we look at the increasing levels of \(\text{CO}_2\) in Earth’s atmosphere. As the greenhouse effect becomes stronger on Earth, are we in any danger of transforming our own planet into a hellish place like Venus?

Let us try to reconstruct the possible evolution of Venus from an earthlike beginning to its present state. Venus may once have had a climate similar to that of Earth, with moderate temperatures, water oceans, and much of its \(\text{CO}_2\) dissolved in the ocean or chemically combined with the surface rocks. Then we allow for modest additional heating—by gradual increase in the energy output of the Sun, for example. When we calculate how Venus’ atmosphere would respond to such effects, it turns out that even a small amount of extra heat can lead to increased evaporation of water from the oceans and the release of gas from surface rocks.

This in turn means a further increase in the atmospheric \(\text{CO}_2\) and \(\text{H}_2\text{O}\), gases that would amplify the greenhouse effect in Venus’ atmosphere. That would lead to still more heat near Venus’ surface and the release of further \(\text{CO}_2\) and \(\text{H}_2\text{O}\). Unless some other processes intervene, the temperature thus continues to rise. Such a situation is called the runaway greenhouse effect.

We want to emphasize that the runaway greenhouse effect is not just a large greenhouse effect; it is an evolutionary process. The atmosphere evolves from having a small greenhouse effect, such as on Earth, to a situation where greenhouse warming is a major factor, as we see today on Venus. Once the large greenhouse conditions develop, the planet establishes a new, much hotter equilibrium near its surface.

Reversing the situation is difficult because of the role water plays. On Earth, most of the \(\text{CO}_2\) is either chemically bound in the rocks of our crust or dissolved by the water in our oceans. As Venus got hotter and hotter, its oceans evaporated, eliminating that safety valve. But the water vapor in the planet’s atmosphere will not last forever in the presence of ultraviolet
light from the Sun. The light element hydrogen can escape from the atmosphere, leaving the oxygen behind to combine chemically with surface rock. The loss of water is therefore an irreversible process: once the water is gone, it cannot be restored. There is evidence that this is just what happened to the water once present on Venus.

We don’t know if the same runaway greenhouse effect could one day happen on Earth. Although we are uncertain about the point at which a stable greenhouse effect breaks down and turns into a runaway greenhouse effect, Venus stands as clear testament to the fact that a planet cannot continue heating indefinitely without a major change in its oceans and atmosphere. It is a conclusion that we and our descendants will surely want to pay close attention to.

Summary

The atmosphere of Venus is 96% \(\ce{CO_2} \). Thick clouds at altitudes of 30 to 60 kilometers are made of sulfuric acid, and a \(\ce{CO_2} \), which is greenhouse effect maintains the high surface temperature. Venus presumably reached its current state from more earthlike initial conditions as a result of a runaway greenhouse effect, which included the loss of large quantities of water.

Glossary

runaway greenhouse effect

the process by which the greenhouse effect, rather than remaining stable or being lessened through intervention, continues to grow at an increasing rate