1.2: Plane Triangular Lamina

Definition: A median of a triangle is a line from a vertex to the midpoint of the opposite side.

Theorem I. The three medians of a triangle are concurrent (meet at a single, unique point) at a point that is two-thirds of the distance from a vertex to the midpoint of the opposite side.

Theorem II. The centre of mass of a uniform triangular lamina (or the centroid of a triangle) is at the meet of the medians.

The proof of I can be done with a nice vector argument (Figure I.1):

Let \bf{A}, \bf{B} be the vectors OA, OB. Then $\bf{A+B}$ is the diagonal of the parallelogram of which OA and OB are two sides, and the position vector of the point C_1 is $\frac{1}{3}(\bf{A+B})$.

To get C_2, we see that

$$\text{(1)} (\text{bf \{C\}_2} = \text{bf \{A\}} + \frac{2}{3}(\text{AM}_2) = \text{bf \{A\}} + \frac{2}{3}({\bf M_2 - A}) = \text{bf \{A\}} + \frac{2}{3}(\frac{1}{2}\text{bf \{B\} - A}) = \frac{1}{3}(\text{bf \{A+B\}})$$

![Figure I.1](image-url)

UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
Thus the points \(C_1 \) and \(C_2 \) are identical, and the same would be true for the third median, so Theorem I is proved.

Now consider an elemental slice as in Figure I.2. The centre of mass of the slice is at its mid-point. The same is true of any similar slices parallel to it. Therefore the centre of mass is on the locus of the mid-points - i.e. on a median. Similarly, it is on each of the other medians, and Theorem II is proved.

![Figure 1.2](image)

That needed only some vector geometry. We now move on to some calculus.

Contributor

- Jeremy Tatum (University of Victoria, Canada)