1.14: Relations between Flux, Intensity, Exitance, Irradiance

In this section I am going to ask, and answer, three questions.

i. (See figure I.3)

A point source of light has an intensity that varies with direction as \(I(\theta, \phi) \). What is the radiant flux radiated into the hemisphere \(\theta < \frac{\pi}{2} \)? This is easy; we already answered it for a complete sphere in equation 1.6.3. For a hemisphere, the answer is

\[
\phi = \int_0^{2\pi} \int_0^{\pi/2} I(\theta, \phi) \sin \theta \, d\theta \, d\phi. \tag{1.14.1} \label{1.14.1}
\]

ii. At a certain point on an extended plane radiating surface, the radiance is \(L(\theta, \phi) \). What is the emergent exitance \(M \) at that point?
Consider an elemental area δA (see figure I.4). The intensity $I(\theta, \phi)$ radiated in the direction (θ, ϕ) is the radiance times the projected area $\cos \theta \ \delta A$. Therefore the radiant power or flux radiated by the element into the hemisphere is

$$\delta \phi = \int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \cos \theta \sin \theta \ d\theta \ d\phi \ \delta A, \tag{1.14.2}$$

and therefore the exitance is

$$M = \int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \cos \theta \sin \theta \ d\theta \ d\phi \ \tag{1.14.3} \label{1.14.3}$$

iii. A point O is at the centre of the base of a hollow radiating hemisphere whose radiance in the direction (θ, ϕ) is $L(\theta, \phi)$. What is the irradiance at that point O? (See figure I.5.)

Consider an elemental area $(a^2 \ \sin \theta \ \delta \theta \ \delta \phi)$ on the inside of the hemisphere at a point where the radiance is $L(\theta, \phi)$ (figure I.5). The intensity radiated towards (O) is the radiance times the area:
The irradiance at \(O\) from this elemental area is (see equation (1.10.1))

\[
\delta E = \frac{\delta I (\theta, \phi) \cos \theta}{a^2} = L (\theta, \phi) \cos \theta \sin \theta \delta \theta \delta \phi,
\]

\tag{1.14.5} \label{1.14.5}

and so the irradiance at \(O\) from the entire hemisphere is

\[
E = \int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \cos \theta \sin \theta \delta \theta \delta \phi.
\]

\tag{1.14.6} \label{1.14.6}

The same would apply for any shape of inverted bowl - or even an infinite plane radiating surface (see figure I.6.)

\text{(FIGURE I.6)}

Contributors

- Jeremy Tatum (University of Victoria, Canada)