$$\require{cancel}$$

# 5.8.7: Solid Cylinder

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Refer to figure $$\text{V.8}$$. The potential from the elemental disc is

$dψ = -2 \pi G ρ δ z \left[ \left( z^2 + a^2 \right)^{1/2} - z \right] \label{5.8.21} \tag{5.8.21}$

and therefore the potential from the entire cylinder is

$ψ = const. - 2 \pi G ρ \left[ \int_h^{h+l} \left(z^2 + a^2 \right)^{1/2} dz - \int_h^{h+1} z dz \right]. \label{5.8.22} \tag{5.8.22}$

I leave it to the reader to carry out this integration and obtain a final expression. One way to deal with the first integral might be to try $$z = a \tan θ$$. This may lead to $$\int \sec^3 θ dθ$$. From there, you could try something like $$\int \sec^3 θ = \int \sec θ d \tan θ = \sec θ \tan θ - \int \tan θ d \sec θ = \sec θ \tan θ - \int \sec θ \tan^2 θ d θ = \sec θ \tan θ - \int \sec^3 θ + \int \sec θ d θ$$, and so on.

This page titled 5.8.7: Solid Cylinder is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.