Skip to main content
Physics LibreTexts

9.9: Summary of Relations Between f, A and S

  • Page ID
    9050
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In this section I use \(ϖf\) to mean either \(ϖ_1 f_{12}\) or \(ϖ_2 f_{21}\), since these are equal; likewise I use \(ϖB\) to mean either \(ϖ_1 B_{12}\) or \(ϖ_2 B_{21}\). The Einstein \(A\) coefficient is used exclusively in connection with emission spectroscopy. The \(B\) coefficient is defined here in terms of radiation energy density per unit wavelength interval; that is, it is the \(B^a\) of section 9.4. The relations between the possible definitions of \(B\) are given in equations 9.4.1-4.

    The following relations for electric dipole radiation may be useful. In these, \(ε_0\) is the “rationalized” definition of free space permittivity, and the formulas are suitable for use with SI units.

    \[ϖ_2 A_{21} = \frac{8\pi hc}{\lambda^5} ϖB = \frac{2\pi e^2}{ε_0 mc \lambda^2} ϖf = \frac{16\pi^3}{3 h ε_0 \lambda^3} S ; \label{9.9.1}\]

    \[ϖB = \frac{e^2 \lambda^3}{4 h ε_0 mc^2}ϖf = \frac{2\pi^2 \lambda^2}{3 h^2 ε_0 c} S = \frac{\lambda^5}{8 \pi h c} ϖ_2 A_{21} ; \label{9.9.2}\]

    \[ϖf = \frac{8\pi^2mc}{3he^2 \lambda}S = \frac{ε_0 mc\lambda^2}{2\pi e^2}ϖ_2 A_{21} = \frac{4h ε_0 m c^2}{e^2 \lambda^3} ϖB ; \label{9.9.3}\]

    \[S = \frac{3hε_0 \lambda^3}{16 \pi^3} ϖ_2 A_{21} = \frac{3h^2 ε_0 c}{2\pi^2 \lambda^2} ϖB = \frac{3he^2 \lambda}{8\pi^2 mc}ϖf . \label{9.9.4}\]

    For electric quadrupole radiation:

    \[ϖ_2 A_{21} = \frac{8\pi^5}{5ε_0 h \lambda^5}S . \label{9.9.5}\]

    For magnetic dipole radiation:

    \[ϖ_2 A_{21} = \frac{16 \pi^3 \mu_0}{3h \lambda^3}S, \label{9.9.6}\]

    in which \(\mu_0\) is the free space permeability.


    This page titled 9.9: Summary of Relations Between f, A and S is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?