Skip to main content
Physics LibreTexts

13.11: Work-Kinetic Energy Theorem in Three Dimensions

  • Page ID
    26939
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall our mathematical result that for one-dimensional motion

    \[m \int_{i}^{f} a_{x} d x=m \int_{i}^{f} \frac{d v_{x}}{d t} d x=m \int_{i}^{f} d v_{x} \frac{d x}{d t}=m \int_{i}^{f} v_{x} d v_{x}=\frac{1}{2} m v_{x, f}^{2}-\frac{1}{2} m v_{x, i}^{2} \nonumber \]

    Using Newton’s Second Law in the form \(F_{x}=m a_{x}\), we concluded that

    \[\int_{i}^{f} F_{x} d x=\frac{1}{2} m v_{x, f}^{2}-\frac{1}{2} m v_{x, i}^{2} \nonumber \]

    Equation (13.11.2) generalizes to the y - and z -directions:

    \[\int_{i}^{f} F_{y} d y=\frac{1}{2} m v_{y, f}^{2}-\frac{1}{2} m v_{y, i}^{2} \nonumber \]

    \[\int_{i}^{f} F_{z} d z=\frac{1}{2} m v_{z, f}^{2}-\frac{1}{2} m v_{z, i}^{2} \nonumber \]

    Adding Equations (13.11.2), (13.11.3), and (13.11.4) yields

    \[\int_{i}^{f}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)=\frac{1}{2} m\left(v_{x, f}^{2}+v_{y, f}^{2}+v_{z, f}^{2}\right)-\frac{1}{2} m\left(v_{x, i}^{2}+v_{y, i}^{2}+v_{z, i}^{2}\right) \nonumber \]

    Recall (Equation (13.8.24)) that the left hand side of Equation (13.11.5) is the work done by the force \(\overrightarrow{\mathbf{F}}\) on the object

    \[W=\int_{i}^{f} d W=\int_{i}^{f}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)=\int_{i}^{f} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}} \nonumber \]

    The right hand side of Equation (13.11.5) is the change in kinetic energy of the object

    \[\Delta K \equiv K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m\left(v_{x, f}^{2}+v_{y, f}^{2}+v_{z, f}^{2}\right)-\frac{1}{2} m\left(v_{x, i}^{2}+v_{y, i}^{2}+v_{z, i}^{2}\right) \nonumber \]

    Therefore Equation (13.11.5) is the three dimensional generalization of the work-kinetic energy theorem

    \[\int_{i}^{f} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=K_{f}-K_{i} \nonumber \]

    When the work done on an object is positive, the object will increase its speed, and negative work done on an object causes a decrease in speed. When the work done is zero, the object will maintain a constant speed.

    Instantaneous Power Applied by a Non-Constant Force for Three Dimensional Motion

    Recall that for one-dimensional motion, the instantaneous power at time t is defined to be the limit of the average power as the time interval \([t, t+\Delta t]\) approaches zero,

    \[P(t)=F_{x}^{a}(t) v_{x}(t) \nonumber \]

    A more general result for the instantaneous power is found by using the expression for dW as given in Equation (13.8.23),

    \[P=\frac{d W}{d t}=\frac{\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}} \nonumber \]

    The time rate of change of the kinetic energy for a body of mass m is equal to the power,

    \[\frac{d K}{d t}=\frac{1}{2} m \frac{d}{d t}(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}})=m \frac{d \overrightarrow{\mathbf{v}}}{d t} \cdot \overrightarrow{\mathbf{v}}=m \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}=P \nonumber \]

    where the we used Equation (13.8.9), Newton’s Second Law and Equation (13.11.10).


    This page titled 13.11: Work-Kinetic Energy Theorem in Three Dimensions is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.