23.10: Solution to the Underdamped Simple Harmonic Oscillator

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Consider the underdamped simple harmonic oscillator equation),

$\frac{d^{2} x}{d t^{2}}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0 \nonumber$

When $$(b / m)^{2}<4 k / m$$ we show that the equation has a solution of the form

$x(t)=x_{\mathrm{m}} e^{-\alpha t} \cos (\gamma t+\phi) \nonumber$

Solution: Let’s suppose the function x(t) has the form

$x(t)=A \operatorname{Re}\left(e^{z t}\right) \nonumber$

where z is a number (possibly complex) and A is a real number. Then

$\frac{d x}{d t}=z A e^{z t} \nonumber$

$\frac{d^{2} x}{d t^{2}}=z^{2} A e^{z t} \nonumber$

We now substitute Equations (23.C.3), (23.C.4), and (23.C.5), into Equation (23.C.1) resulting in

$z^{2} A e^{z t}+\frac{b}{m} z A e^{z t}+\frac{k}{m} A e^{z t}=0 \nonumber$

Collecting terms in Equation (23.C.6) yields

$\left(z^{2}+\frac{b}{m} z+\frac{k}{m}\right) A e^{z t}=0 \nonumber$

The condition for the solution is that

$z^{2}+\frac{b}{m} z+\frac{k}{m}=0 \nonumber$

$z=\frac{-(b / m) \pm\left((b / m)^{2}-4 k / m\right)^{1 / 2}}{2} \nonumber$

When $$(b / m)^{2}<4 k / m$$, the oscillator is called underdamped, and we have two solutions for z , however the solutions are complex numbers. Let

$\gamma=\left(k / m-(b / 2 m)^{2}\right)^{1 / 2} \nonumber$

and

$\alpha=b / 2 m \nonumber$

Recall that the imaginary number $$i=\sqrt{-1}$$. The two solutions are then $$z_{1}=-\alpha+i \gamma t$$ and $$z_{2}=-\alpha-i \gamma t$$. Because our system is linear, our general solution is a linear combination of these two solutions,

$x(t)=A_{1} e^{-\alpha+i \gamma t}+A_{2} e^{-\alpha-i \gamma t}=\left(A_{1} e^{i \gamma t}+A_{2} e^{-i \gamma t}\right) e^{-\alpha t} \nonumber$

where $$A_{1}$$ and $$A_{2}$$ are constants. We shall transform this expression into a more familiar equation involving sine and cosine functions with help from the Euler formula,

$e^{\pm i \gamma t}=\cos (\gamma t) \pm i \sin (\gamma t) \nonumber$

Therefore we can rewrite our solution as

$x(t)=\left(A_{1}(\cos (\gamma t)+i \sin (\gamma t))+A_{2}(\cos (\gamma t)-i \sin (\gamma t))\right) e^{-\alpha t} \nonumber$

A little rearrangement yields

$x(t)=\left(\left(A_{1}+A_{2}\right) \cos (\gamma t)+i\left(A_{1}-A_{2}\right) \sin (\gamma t)\right) e^{-\alpha t} \nonumber$

Define two new constants $$C=A_{1}+A_{2}$$ and $$D=i\left(A_{1}-A_{2}\right)$$. Then our solution looks like

$x(t)=(C \cos (\gamma t)+D \sin (\gamma t)) e^{-\alpha t} \nonumber$

Recall from Example 23.5 that we can rewrite

$C \cos (\gamma t)+D \sin (\gamma t)=x_{\mathrm{m}} \cos (\gamma t+\phi) \nonumber$

where

$x_{\mathrm{m}}=\left(C^{2}+D^{2}\right)^{1 / 2}, \text { and } \phi=\tan ^{-1}(D / C) \nonumber$

Then our general solution for the underdamped case (Equation (23.C.16)) can be written as

$x(t)=x_{\mathrm{m}} e^{-\alpha t} \cos (\gamma t+\phi) \nonumber$

There are two other possible cases which we shall not analyze: when $$(b / m)^{2}>4 k / m$$, a case referred to as overdamped, and when $$(b / m)^{2}=4 k / m$$, a case referred to as critically damped.

This page titled 23.10: Solution to the Underdamped Simple Harmonic Oscillator is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.