Skip to main content
Physics LibreTexts

15.7: Symplectic Representation

  • Page ID
    14242
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Hamilton’s first-order equations of motion are symmetric if the generalized and constraint force terms, in equation \((15.1.9)\), are excluded.

    \[\mathbf{\dot{q}} = \frac{\partial H}{ \partial \mathbf{p}} \quad − \mathbf{\dot{p}} = \frac{\partial H}{ \partial \mathbf{q}} \nonumber\]

    This stimulated attempts to treat the canonical variables \((\mathbf{q}, \mathbf{p})\) in a symmetric form using group theory. Some graduate textbooks in classical mechanics have adopted use of symplectic symmetry in order to unify the presentation of Hamiltonian mechanics. For a system of \(n\) degrees of freedom, a column matrix \(\boldsymbol{\eta}\) is constructed that has \(2n\) elements where

    \[\eta_j = q_j \quad \eta_{n+j} = p_j \quad j \leq n \label{15.150}\]

    Therefore the column matrix

    \[\left(\frac{\partial H}{ \partial \boldsymbol{\eta}} \right)_j = \frac{\partial H }{\partial q_j} \quad \left(\frac{\partial H}{ \partial \boldsymbol{\eta}} \right)_{n+j} = \frac{\partial H }{\partial p_j} \quad j \leq n \label{15.151}\]

    The symplectic matrix \(\mathbf{J}\) is defined as being a \(2n\) by \(2n\) skew-symmetric, orthogonal matrix that is broken into four \(n \times n\) null or unit matrices according to the scheme

    \[\mathbf{J} = \begin{pmatrix} [\mathbf{0}] & +[\mathbf{1}] \\ − [\mathbf{1}] & [\mathbf{0}] \end{pmatrix} \label{15.152}\]

    where \([\mathbf{0}]\) is the \(n\)-dimension null matrix, for which all elements are zero. Also \([\mathbf{1}]\) is the \(n\)-dimensional unit matrix, for which the diagonal matrix elements are unity and all off-diagonal matrix elements are zero. The \(\mathbf{J}\) matrix accounts for the opposite signs used in the equations for \(\mathbf{\dot{q}}\) and \(\mathbf{\dot{p}}\). The symplectic representation allows the Hamilton’s equations of motion to be written in the compact form

    \[\boldsymbol{\dot{\eta}} = \mathbf{J}\frac{\partial H }{\partial \boldsymbol{\eta}} \label{15.153}\]

    This textbook does not use the elegant symplectic representation since this representation ignores the important generalized forces and Lagrange multiplier forces.


    This page titled 15.7: Symplectic Representation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.