Skip to main content
Physics LibreTexts

12.3: Vector Identities

  • Page ID
    24862
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Algebraic Identities

    \[ \begin{align} \mathbf { A } \cdot ( \mathbf { B } \times \mathbf { C } ) &= \mathbf { B } \cdot ( \mathbf { C } \times \mathbf { A } ) = \mathbf { C } \cdot ( \mathbf { A } \times \mathbf { B } ) \\[5pt] \mathbf { A } \times ( \mathbf { B } \times \mathbf { C } ) &= \mathbf { B } ( \mathbf { A } \cdot \mathbf { C } ) - \mathbf { C } ( \mathbf { A } \cdot \mathbf { B } ) \end{align} \nonumber \]

    Identities Involving Differential Operators

    \[ \begin{align} \nabla \cdot ( \nabla \times \mathbf { A } ) &= 0\\[5pt] \nabla \times ( \nabla f ) &= 0\\[5pt] \nabla \times ( f \mathbf { A } ) &= f ( \nabla \times \mathbf { A } ) + ( \nabla f ) \times \mathbf { A }\\[5pt] \nabla \cdot ( \mathbf { A } \times \mathbf { B } ) &= \mathbf { B } \cdot ( \nabla \times \mathbf { A } ) - \mathbf { A } \cdot ( \nabla \times \mathbf { B } )\\[5pt] \nabla \cdot ( \nabla f ) &= \nabla ^ { 2 } f\\[5pt] \nabla \times \nabla \times \mathbf { A } &= \nabla ( \nabla \cdot \mathbf { A } ) - \nabla ^ { 2 } \mathbf { A }\\[5pt] \nabla ^ { 2 } \mathbf { A }& = \nabla ( \nabla \cdot \mathbf { A } ) - \nabla \times ( \nabla \times \mathbf { A } )\end{align} \nonumber \]

    Divergence Theorem

    Given a closed surface \({\mathcal S}\) enclosing a contiguous volume \({\mathcal V}\), \[\int_{\mathcal V} \left( \nabla \cdot {\bf A} \right) dv = \oint_{\mathcal S} {\bf A}\cdot d{\bf s} \nonumber \] where the surface normal \(d{\bf s}\) is pointing out of the volume.

    Stokes’ Theorem

    Given a closed curve \({\mathcal C}\) bounding a contiguous surface \({\mathcal S}\), \[\int_{\mathcal S} \left( \nabla \times {\bf A} \right) \cdot d{\bf s} = \oint_{\mathcal C} {\bf A}\cdot d{\bf l} \nonumber \] where the direction of the surface normal \(d{\bf s}\) is related to the direction of integration along \({\mathcal C}\) by the “right hand rule.”


    This page titled 12.3: Vector Identities is shared under a CC BY-SA license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) .

    • Was this article helpful?