Skip to main content
Physics LibreTexts

4.2: Conjugates and Magnitudes

  • Page ID
    34534
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For each complex number \(z = x + iy\), its complex conjugate is a complex number whose imaginary part has the sign flipped: \[z^* = x - i y.\] Conjugation obeys two important properties: \[\begin{align} (z_1 + z_2)^* &= z_1^* + z_2^* \\ (z_1 z_2)^* &= z_1^* z_2^*.\end{align}\]

    Example \(\PageIndex{1}\)

    Let us prove that \((z_1 z_2)^* = z_1^* z_2^*\). First, let \(z_1 = x_1 + i y_1\) and \(z_2 = x_2 + i y_2\). Then, \[\begin{align} (z_1 z_2)^* &= \left[(x_1+iy_1)(x_2+iy_2)\right]^* \\ &= \left[\left(x_1 x_2 - y_1 y_2\right) + i\left(x_1y_2+y_1x_2\right)\right]^* \\ &= \left(x_1 x_2 - y_1 y_2\right) - i\left(x_1y_2+y_1x_2\right) \\ &= \left(x_1 - i y_1\right)\left(x_2 - i y_2\right) \\ &= z_1^* z_2^* \end{align}\]

    For a complex number \(z = x + i y\), the magnitude of the complex number is \[|z| = \sqrt{x^2 + y^2}.\] This is a non-negative real number. A complex number and its conjugate have the same magnitude: \(|z| = |z^*|\). Also, we can show that complex magnitudes have the property \[|z_1 z_2| = |z_1| \, |z_2|.\] This property is similar to the “absolute value” operation for real numbers, hence the similar notation.

    As a corollary, taking a power of a complex number raises its magnitude by the same power: \[|z^n| = |z|^n \;\;\;\textrm{for}\;\;n \in \mathbb{Z}.\]


    This page titled 4.2: Conjugates and Magnitudes is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?