Skip to main content
Physics LibreTexts

6.6: Solving the 1D Semi-Infinite Square Well

  • Page ID
    9746
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Imagine a particle trapped in a one-dimensional well of length L. Inside the well there is no potential energy. However, the “right-hand wall” of the well (and the region beyond this wall) has a finite potential energy. This means that it is possible for the particle to escape the well if it had enough energy.

    Again, since this potential is a piece-wise function, Schrödinger’s equation must be solved in the three regions separately.
    In the region x < 0, we have already seen that since the potential is infinite there is no chance of finding the particle in this region. Thus, \(\Psi\) = 0 in this region.
    In the region 0 < x < L, the equation and solution should look familiar:

    \[\begin{align} - \dfrac{\hbar}{2m}\dfrac{d^2}{dx^2}\Psi(x) + U(x)\Psi(x) &= E\Psi(x) \\ \nonumber - \dfrac{\hbar}{2m}\dfrac{d^2}{dx^2}\Psi(x) + (0)\Psi(x) &= E\Psi(x) \\ \nonumber - \dfrac{\hbar}{2m}\dfrac{d}{dx^2}\Psi(x) &= E\Psi(x) \\ \nonumber \dfrac{d^2}{dx^2}\Psi(x) &= -\dfrac{2mE}{\hbar^2}\Psi(x) \end{align}\]

    The general solution to this equation is

    \[ \Psi(x) = A\sin(kx) + B\cos(kx) \text{with} k = \sqrt{\dfrac{2mE}{\hbar^2}}\]

    In order for this solution to be continuous with the solution for x < 0, the coefficient B must equal zero. Thus,

    \[ \Psi(x) = A\sin(kx) \]

    In the region x > L, the equation is:

    \[\begin{align} & - \dfrac{\hbar}{2m}\dfrac{d^2}{dx^2}\Psi(x) + U(x)\Psi(x) = E\Psi(x) \\ \nonumber & - \dfrac{\hbar}{2m}\dfrac{d^2}{dx^2}\Psi(x) = (E - U)\Psi(x) \\ \nonumber & \dfrac{d^2}{dx^2}\Psi(x) = \dfrac{2m(U-E)}{\hbar^2}\Psi(x) \end{align}\]

    The general solution is:

    \[ \begin{align} & \Psi(x) = Ce^{aX} + De^{-aX} \text{ with } \alpha = \sqrt{\dfrac{2m(U - E)}{\hbar^2}}\end{align}\]

    Since this region contains the point x = +∞, C must equal zero or the wavefunction will diverge. Therefore,

    \[ \Psi(x) = De^{-aX} \]

    The wave function, and the derivative of the wave function, must be continuous across the boundary at x = L. Forcing continuity leads to:

    \[ \begin{align} & \Psi(x = L^-) = \Psi(x = L^+) \\ \nonumber & A\sin(kL) = De^{-aL} \end{align}\]
    and forcing the continuity of the derivative leads to:

    \[ \begin{align} & \Psi(x = L^-) = \Psi(x = L^+) \\ \nonumber & kA\cos(kL) = -\alpha De^{-aL} \end{align}\]

    Substituting the first equation into the second equation yields:

    \[ \begin}align} & kA\cos(kL) = - \alpha( A \sin( kL)) \\ \nonumber & \tan( kL) = - \dfrac{k}{\alpha} \\ \nonumber & \tan \bigg( \sqrt{\dfrac{2mE}{\hbar^2}L \bigg) = - \dfrac{

    This last result is a transcendental equation for the allowed energy levels. If the potential energy and width of the well are known, the allowed energy levels can be determined by using a solver or graphing the function.

    The 1D Semi-Infinite Well

    Determine the allowed energy levels for a proton trapped in a semi-infinite square well of width 5.0 fm and depth 60 MeV.

    Applying the previous result:

    \[ \tan \bigg \sqrt{\frac{2mc^2L^2E}{(\hbar c)^2}} \bigg) = - \sqrt{\frac{E}{U-E}}\]
    \[ \tan \bigg \sqrt{\frac{2(938 \text{ MeV} (5.0 \text{ fm})^2 E}{(194.7 \text{ MeV fm})^2}} \bigg) = - \sqrt{\frac{E}{60-E}}\]

    \[ \tan \bigg \sqrt{1.204 E} \bigg) = - \sqrt{\frac{E}{60-E}}\]
    with E in MeV.
    The solutions to this equation, which represent the allowed energy levels for the proton, are 6.53, 25.75, and 55.08 MeV.


    This page titled 6.6: Solving the 1D Semi-Infinite Square Well is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paul D'Alessandris.

    • Was this article helpful?