1.2: Operators in Hilbert Space
- Page ID
- 56500
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The objects \(|\psi\rangle\) are vectors in a Hilbert space. We can imagine applying rotations of the vectors, rescaling, permutations of vectors in a basis, and so on. These are described mathematically as operators, and we denote them by capital letters A, B, C, etc. In general we write
\[A|\phi\rangle=|\psi\rangle\tag{1.6}\]
for some \( |\phi\rangle, |\psi\rangle \in\) . It is important to remember that operators act on all the vectors in Hilbert space. Let \(\left\{\left|\phi_{j}\right\rangle\right\}_{j}\) be an orthonormal basis. We can calculate the inner product between the vectors \(\left|\phi_{j}\right\rangle\) and A \(\left|\phi_{k}\right\rangle\):
\[\left\langle\phi_{j}\right|\left(A\left|\phi_{k}\right\rangle\right)=\left\langle\phi_{j}|A| \phi_{k}\right\rangle \equiv A_{j k}\tag{1.7}\]
The two indices indicate that operators are matrices.
As an example, consider two vectors, written as two-dimensional column vectors
\[\left|\phi_{1}\right\rangle=\left(\begin{array}{l}
1 \\
0
\end{array}\right), \quad\left|\phi_{2}\right\rangle=\left(\begin{array}{l}
0 \\
1
\end{array}\right)\tag{1.8}\]
and suppose that
\[A=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\tag{1.9}\]
We calculate
\[A_{11}=\left\langle\phi_{1}|A| \phi_{1}\right\rangle=(1,0) \cdot\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0
\end{array}\right)=(1,0) \cdot\left(\begin{array}{l}
2 \\
0
\end{array}\right)=2\tag{1.10}\]
Similarly, we can calculate that \(A_{22}=3\), and \(A_{12}=A_{21}=0\) (check this). We therefore have that \(A\left|\phi_{1}\right\rangle=2\left|\phi_{1}\right\rangle\) and \(A\left|\phi_{2}\right\rangle=3\left|\phi_{2}\right\rangle\).
Complex numbers \(a\) have complex conjugates \(a^{*}\) and vectors \(|\psi\rangle\) have dual vectors \(\langle\phi|\). Is there an equivalent for operators? The answer is yes, and it is called the adjoint, or Hermitian conjugate, and is denoted by a dagger \(\dagger\). The natural way to define it is according to the rule
\[\langle\psi|A| \phi\rangle^{*}=\left\langle\phi\left|A^{\dagger}\right| \psi\right\rangle\tag{1.11}\]
for any \(|\phi\rangle\) and \(|\psi\rangle\). In matrix notation, and given an orthonormal basis \(\left\{\left|\phi_{j}\right\rangle\right\}_{j}\), this becomes
\[\left\langle\phi_{j}|A| \phi_{k}\right\rangle^{*}=A_{j k}^{*}=\left\langle\phi_{k}\left|A^{\dagger}\right| \phi_{j}\right\rangle=A_{k j}^{\dagger}\tag{1.12}\]
So the matrix representation of the adjoint \(A^{\dagger}\) is the transpose and the complex conjugate of the matrix A, as given by \(\left(A^{\dagger}\right)_{j k}=A_{k j}^{*}\). The adjoint has the following properties:
- \((c A)^{\dagger}=c^{*} A^{\dagger}\),
- \((A B)^{\dagger}=B^{\dagger} A^{\dagger}\),
- \((|\phi\rangle)^{\dagger}=\langle\phi|\).
Note the order of the operators in 2: AB is generally not the same as BA. The difference between the two is called the commutator, denoted by
\[[A, B]=A B-B A\tag{1.13}\]
For example, we can choose
\[A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\tag{1.14}\]
which leads to
\[\begin{aligned}{}
[A, B] &=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
&=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right) \neq 0 .
\end{aligned}\tag{1.15}\]
Many, but not all, operators have an inverse. Let \(A|\phi\rangle=|\psi\rangle\) and \(B|\psi\rangle=|\phi\rangle\). Then we have
\[B A|\phi\rangle=|\phi\rangle \quad \text { and } \quad A B|\psi\rangle=|\psi\rangle\tag{1.16}\]
If Eq. (1.16) holds true for all \(|\phi\rangle\) and \(|\psi\rangle\), then \(B\) is the inverse of \(A\), and we write \(B=A^{-1}\). An operator that has an inverse is called invertible. Another important property that an operator may possess is positivity. An operator is positive if
\[\langle\phi|A| \phi\rangle \geq 0 \quad \text { for all }|\phi\rangle\tag{1.17}\]
We also write this as \(A \geq 0\).
From the matrix representation of operators you can easily see that the operators themselves form a linear vector space:
- \(A+B=B+A\),
- \(A+(B+C)=(A+B)+C\),
- \(a(A+B)=a A+a B\),
- \((a+b) A=a A+b A\),
- \(a(b A)=(a b) A\).
We can also define the operator norm \(\|A\|\) according to
\[\|A\|=\sqrt{\operatorname{Tr}\left(A^{\dagger} A\right)} \equiv \sqrt{\sum_{i j} A_{i j}^{*} A_{j i}},\tag{1.18}\]
which means that the linear vector space of operators is again a Hilbert space. The symbol Tr(.) denotes the trace of an operator, and we will return to this special operator property later in this section.
Every operator has a set of vectors for which
\[A\left|a_{j}\right\rangle=a_{j}\left|a_{j}\right\rangle, \quad \text { with } a_{j} \in \mathbb{C}\tag{1.19}\]
This is called the eigenvalue equation (or eigenequation) for \(A\), and the vectors \(\left|a_{j}\right\rangle\) are the eigenvectors. The complex numbers \(a_{j}\) are eigenvalues. In the basis of eigenvectors, the matrix representation of \(A\) becomes
\[A=\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{N}
\end{array}\right)\tag{1.20}\]
When some of the \(a_{j} \mathrm{s}\) are the same, we speak of degenerate eigenvalues. When there are \(n\) identical eigenvalues, we have \(n\)-fold degeneracy. The eigenvectors corresponding to this eigenvalue then span an \(n\)-dimensional subspace of the vector space. We will return to subspaces shortly, when we introduce projection operators.
For any orthonormal basis \(\left\{\left|\phi_{j}\right\rangle\right\}_{j}\) we have
\[\left\langle\phi_{j}|A| \phi_{k}\right\rangle=A_{j k}\tag{1.21}\]
which can be written in the form
\[A=\sum_{j k} A_{j k}\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right|\tag{1.22}\]
For the special case where \(\left|\phi_{j}\right\rangle=\left|a_{j}\right\rangle\) this reduces to
\[A=\sum_{j} a_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|\tag{1.23}\]
This is the spectral decomposition of \(A\). When all \(a_{j}\) are equal, we have complete degeneracy over the full vector space, and the operator becomes proportional (up to a factor \(a_{j}\)) to the identity \(\mathbb{I}\).
Note that this is independent of the basis \(\left\{\left|a_{j}\right\rangle\right\}\). As a consequence, for any orthonormal basis \(\left\{\left|\phi_{j}\right\rangle\right\}\) we have
\[\mathbb{I}=\sum_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\tag{1.24}\]
This is the completeness relation, and we will use this many times in our calculations.
If two non-degenerate operators commute \(([A, B]=0)\), then they have a common set of eigenvectors.
- Proof
-
Let \(A=\sum_{k} a_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right|\) and \(B=\sum_{j k} B_{j k}\left|a_{j}\right\rangle\left\langle a_{k}\right|\). We can choose this without loss of generality: we write both operators in the eigenbasis of \(A\). Furthermore, \([A, B]=0\) implies that \(A B=B A\).
\[\begin{aligned}
&A B=\sum_{k l m} a_{k} B_{l m}|a_{k}\rangle\langle a_{k} \mid a_{l}\rangle\langle a_{m}|=\sum_{l m} a_{l} B_{l m}| a_{l}\rangle\langle a_{m}| \\
&B A=\sum_{k l m} a_{k} B_{l m}|a_{l}\rangle\langle a_{m} \mid a_{k}\rangle\langle a_{k}|=\sum_{l m} a_{m} B_{l m}| a_{l}\rangle\left\langle a_{m}\right|
\end{aligned}\tag{1.25}\]Therefore
\[[A, B]=\sum_{l m}\left(a_{l}-a_{m}\right) B_{l m}\left|a_{l}\right\rangle\left\langle a_{m}\right|=0\tag{1.26}\]
If \(a_{l} \neq a_{m}\) for \(l \neq m\), then \(B_{l m}=0\), and \(B_{l m} \propto \delta_{l m}\). Therefore \(\left\{\left|a_{j}\right\rangle\right\}\) is an eigenbasis for B.
The proof of the converse is left as an exercise. It turns out that this is also true when \(A\) and/or \(B\) are degenerate.