Skip to main content
Physics LibreTexts

11.1: Exercises

  • Page ID
    15944
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Consider the two-state system investigated in Section 1.3. Show that the most general expressions for the perturbed energy eigenvalues and eigenstates are \[\begin{aligned} E_1'&= E_1 + e_{11}+\frac{|e_{12}|^{\,2}}{E_1-E_2}+{\cal O}(\epsilon^{\,3}),\nonumber\\[0.5ex] E_2' &= E_2+e_{22}- \frac{|e_{12}|^{\,2}}{E_1-E_2}+{\cal O}(\epsilon^{\,3}),\nonumber\end{aligned}\] and \[\begin{aligned} \psi_1' &= \psi_1+ \frac{e_{12}^{\,\ast}}{E_1-E_2}\,\psi_2 + {\cal O}(\epsilon^{\,2}),\nonumber\\[0.5ex] \psi_2' &= \psi_2 -\frac{e_{12}}{E_1-E_2}\,\psi_1+{\cal O}(\epsilon^{\,2}),\nonumber\end{aligned}\] respectively. Here, \(\epsilon = |e_{12}|/(E_1-E_2)\ll 1\). You may assume that \(|e_{11}|/(E_1-E_2)\), \(|e_{22}|/(E_1-E_2)\sim {\cal O}(\epsilon)\).
    2. Consider the two-state system investigated in Section 1.3. Show that if the unperturbed energy eigenstates are also eigenstates of the perturbing Hamiltonian then \[\begin{aligned} E_1'&= E_1 + e_{11},\nonumber\\[0.5ex] E_2' &= E_2+e_{22},\nonumber\end{aligned}\] and \[\begin{aligned} \psi_1' &= \psi_1 \nonumber\\[0.5ex] \psi_2' &= \psi_2\nonumber\end{aligned}\] to all orders in the perturbation expansion.
    3. Consider the two-state system investigated in Section 1.3. Show that if the unperturbed energy eigenstates are degenerate, so that \(E_1=E_2=E_{12}\), then the most general expressions for the perturbed energy eigenvalues and eigenstates are \[E^\pm = E_{12}+e^\pm,\] and \[\psi^\pm= \langle 1|\psi^\pm\rangle\, \psi_1+\langle 2|\psi^\pm\rangle\,\psi_2,\] respectively, where \[e^\pm = \frac{1}{2}\,(e_{11}+e_{22})\pm \frac{1}{2}\left[(e_{11}-e_{22})^2+4\,|e_{12}|^{\,2}\right]^{1/2},\] and \[\frac{\langle 1|\psi^\pm\rangle}{\langle 2|\psi^\pm\rangle}=-\left(\frac{e_{12}}{e_{11}-e^\pm}\right)=-\left(\frac{e_{22}-e^{\pm}}{e_{12}^{\,\ast}}\right).\] Demonstrate that the \(\psi^\pm\) are the simultaneous eigenstates of the unperturbed Hamiltonian, \(H_0\), and the perturbed Hamiltonian, \(H_1\), and that the \(e^\pm\) are the corresponding eigenvalues of \(H_1\).
    4. Calculate the lowest-order energy-shift in the ground state of the one-dimensional harmonic oscillator when the perturbation \[V = \lambda\,x^{\,4}\] is added to \[H = \frac{p_x^{\,2}}{2\,m} + \frac{1}{2}\,m\,\omega^{\,2}\,x^{\,2}.\]

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 11.1: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?