Skip to main content
Physics LibreTexts

6.3: Square Barrier

  • Page ID
    14783
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A slightly more involved example is the square potential barrier, an inverted square well, see Figure \(\PageIndex{1}\).

    imageedit_1_6100284174.png

    Figure \(\PageIndex{1}\): The square barrier.

    We are interested in the case that the energy is below the barrier height, \(0< E< V_0\). If we once again assume an incoming beam of particles from the right, it is clear that the solutions in the three regions are

    \[ \begin{align} ϕ_I ( x ) &= A_1 e^{i k x} + B_1 e ^{− i k x} \\[5pt] ϕ_{II} ( x ) &= A_2 \cosh ( κ x ) + B_2 \sinh ( κ x ) \\[5pt] ϕ_{III} ( x ) &= A_3 e^{ i k x}. \label{6.16} \end{align}\]

    Here

    \[k = \sqrt{\dfrac{2 m}{ℏ^2} E} \]

    and

    \[κ = \sqrt{\dfrac{2 m}{ℏ^2} ( V_0 − E )} . \label{6.17}\]

    Matching \(ϕ_I\) and \(ϕ_{II} \) at \(x=− a\) and \(ϕ_{II}\) and \(ϕ_{III} \) at \(x= a\) gives (use \(\sinh (− x)=− \sinh x\) and \(\cosh (− x)= \cosh x\)).

    \[ \begin{align} A_1 e^{−ika} + B_1 e^{ika} &= A_2 \cosh κ a − B_2 \sinh κ a \label{6.18} \\[5pt] i k ( A_1 e^{−ika} − B_1 e^{ika} ) &= κ ( − A_2 \sinh κ a + B_2 \cosh κ a ) \label{6.19} \\[5pt] A_3 e^{ika} &= A_2 \cosh κ a + B_2 \sinh κ a \label{6.20} \\[5pt] i k ( A_3 e^{ika} ) &= κ ( A_2 \sinh κ a + B_2 \cosh κ a ) \label{6.21} \end{align}\]

    These are four equations with five unknowns. We can thus express for of the unknown quantities in one other. Let us choose that one to be \(A_1\), since that describes the intensity of the incoming beam. We are not interested in \(A_2\) and \(B_2\), which describe the wave function in the middle. We can combine the equation above so that they either have \(A_2\) or \(B_2\) on the right hand side, which allows us to eliminate these two variables, leading to two equations with the three interesting unknowns \(A_3\), \(B_1\) and \(A_1\). These can then be solved for \(A_3\) and \(B_1\) in terms of \(A_1\):

    The way we proceed is to add Equations \ref{6.18} and \ref{6.20}, subtract Equations \ref{6.19} from \ref{6.21}, subtract \ref{6.20} from \ref{6.18}, and add \ref{6.19} and \ref{6.21}. We find

    \[ \begin{align} A_1 e^{−ika} + B_1 e^{ika} + A_3 e^{ika} &= 2 A_2 \cosh κ a \label{6.22} \\[5pt] i k ( − A_1 e^{−ika} + B_1 e^{ika} + A_3 e^{ika} ) &= 2 κ A_2 \sinh κ a \label{6.23} \\[5pt] A_1 e^{−ika} + B_1 e^{ika} − A_3 e^{ika} &= − 2 B_2 \sinh κ a \label{6.24} \\[5pt] i k ( A_1 e^{−ika} − B_1 e^{ika} + A_3 e^{ika} ) &= 2 κ B_2 \cosh κ a \label{6.25} \end{align}\]

    We now take the ratio of equations \ref{6.22} and \ref{6.23} and of \ref{6.24} and \ref{6.25}, and find (i.e., we take ratios of left- and right hand sides, and equate those)

    \[ \begin{align} \dfrac{A_1 e^{−ika} + B_1 e^{ika} + A_3 e^{ika} }{i k ( − A_1 e^{−ika} + B_1 e^{ika} + A_3 e^{ika} )} &= \dfrac{1}{ κ \tanh κ a} \label{6.26} \\[5pt] \dfrac{ A_1 e^{−ika} + B_1 e^{ika} − A_3 e^{ika}}{ i k ( − A_1 e^{−ika} + B_1 e^{ika} + A_3 e^{ika} )} &= − \dfrac{\tanh κ a}{ κ} \label{6.27} \end{align}\]

    These equations can be rewritten as (multiplying out the denominators, and collecting terms with \(A_1\), \(B_3\) and \(A_3\))

    \[ \begin{align} A_1 e^{−ika} ( κ \tanh κ a + i k ) + B_1 e^{ika} ( κ \tanh κ a − i k ) + A_3 e^{ika} ( κ \tanh κ a − i k ) = 0 \label{6.28} \\[5pt] A_1 e^{−ika} ( κ − i k \tanh κ a ) + B_1 e^{ika} ( κ + i k \tanh κ a ) + A_3 e^{ika} ( − κ + i k \tanh κ a ) &= 0 \label{6.29} \end{align}\]

    Now eliminate \(A_3\), add Equations \ref{6.28} and \ref{6.29} to find

    \[\begin{array}{l} 
    A_1 e^{-i k a}[ (\kappa-i k \tanh \kappa a)(\kappa \tanh \kappa a+i k)+ \\
    (\kappa \tanh \kappa a-i k)(\kappa-i k \tanh \kappa a)] \\
    +B_1 e^{i k a}[(\kappa-i k \tanh \kappa a)(\kappa \tanh \kappa a-i k)+ \\
    (\kappa \tanh \kappa a-i k)(\kappa+i k \tanh \kappa a)]=0
    \end{array}\]

    Thus we find

    \[B_1 = − A_1 e ^{− 2 i k a} \dfrac{ \tanh κ a ( k^2 + κ^2 ) }{( κ − i k \tanh κ a ) ( κ \tanh κ a − i k )} \label{6.31}\]

    and we find, after using some of the angle-doubling formulas for hyperbolic functions, that the absolute value squared, i.e., the reflection coefficient, is

    \[R = \dfrac{ \sinh^2 2 κ a \left( κ^2 + k^2 \right)^2}{ 4 κ^2 k^2 + \left( κ^2 − k^2 \right)^2 \sinh^2 2 κ a } \label{6.32}\]

    In a similar way we can express \(A_3\) in terms of \(A_1\) (add Equations \ref{6.28} and Equation \ref{6.29}, or use

    \[T= 1− R!\]

    Alternative approach

    The equation can be given in matrix form as

    \[\begin{pmatrix} {e}^{−ika} & {e}^{ika}\\
    ik{e}^{−ika}& -ik{e}^{ika}  \\
    \end{pmatrix}\begin{pmatrix}
    {A}_{1} \\{B}_{1} 
    \end{pmatrix}
    \begin{pmatrix}
    \mathop{cosh}\nolimits κa & -\mathop{ sinh}\nolimits κa&  \\
    -κ\mathop{ sinh} \nolimits κa & κ\mathop{ cosh} \nolimits κa \\
    \end{pmatrix}\begin{pmatrix}
    {A}_{2} \\{B}_{2} 
    \end{pmatrix}\begin{pmatrix} 
    {e}^{ika} & {e}^{-ika}\\
    ik{e}^{−ika}& -ik{e}^{ika} \\
    \end{pmatrix}\begin{pmatrix}
    \mathop{cosh}\nolimits κa & \mathop{ sinh}\nolimits κa&  \\
    κ\mathop{ sinh} \nolimits κa & κ\mathop{ cosh} \nolimits κa \\
    \end{pmatrix}\begin{pmatrix}
    {A}_{2} \\{B}_{2} 
    \end{pmatrix} \]

    Question: Can you invert the matrices and find the same answer as before?

    Example \(\PageIndex{1}\): Hydrogen Atom Scattering

    We now consider a particle of the mass of a hydrogen atom, \(m= 1.67 × 10^{−27} kg\), and use a barrier of height 4 meV and of width \(10^{−10} m\). The picture for reflection and transmission coefficients can seen in Figure \(\PageIndex{1; left}\). We have also evaluated \(R\) and \(T\) for energies larger than the height of the barrier (the evaluation is straightforward).

    imageedit_7_6704761981.pngimageedit_13_5320830378.png

    Figure \(\PageIndex{2}\): The reflection and transmission coefficients for a square barrier of height 4 meV (left) amd 50 meV (right) and width 1 0− 1 0 m.

    If we heighten the barrier to 50 meV, we find a slightly different picture (Figure \(\PageIndex{1; right}\)).

    Notice the oscillations (resonances) in the reflection. These are related to an integer number of oscillations fitting exactly in the width of the barrier, \(\sin^2κ a= 0\).


    This page titled 6.3: Square Barrier is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to the style and standards of the LibreTexts platform.