Skip to main content
Physics LibreTexts

3.5: Time-variation of expectation values - Degeneracy and constants of motion

  • Page ID
    28757
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The time variation of the expectation value of an operator \(\hat{A}\) which commutes with the Hamiltonian is:

    \[\frac{d}{dt} \langle \Phi |\hat{A}| \Phi \rangle = \int d^3 r \frac{d \Phi^*}{dt} \hat{A} \Phi + \Phi^*\hat{A} \frac{d \Phi}{dt} \nonumber\]

    but since \(i \hbar \frac{d \Phi}{dt} = \hat{H} \Phi\) and \(−i \hbar \frac{d \Phi^*}{dt} = \hat{H}^* \Phi^* \)

    \[−i \hbar \frac{d}{dt} \langle \Phi |\hat{A}| \Phi \rangle = \int (\hat{H}^* \Phi^*\hat{A} \Phi − \Phi^* \hat{A}\hat{H} \Phi )d^3 r = h \Phi |[\hat{H}, \hat{A}]| \Phi \rangle \nonumber\]

    Where we also use the fact that \(\hat{H}\) is Hermitian. Thus if \(\hat{H}\) commutes with \(\hat{A} ([\hat{H}, \hat{A}] = 0)\), the expectation value of A is independent of time. It is a conserved quantity.

    As we have seen above, if we have degenerate eigenstates of the Hamiltonian, \(\hat{H}\), then there must be some other operator \(\hat{A}\) which commutes with the Hamiltonian for which there are energydegenerate eigenstates with different eigenvalues A. These eigenvalues, A, are then constants of the motion. Moreover, if \(\Phi\) is an eigenfunction of \(\hat{H}\), then \(\hat{A} \Phi\) is also an eigenfunction of \(\hat{H}\).

    \[\hat{H} (\hat{A} \Phi ) = \hat{A}\hat{H} \Phi = \hat{A}(E \Phi ) = E(\hat{A} \Phi ) \nonumber\]

    There is a three way link between symmetry, degeneracy and conserved quantities.

    3.1.PNG
    Figure \(\PageIndex{1}\): Any linear combination of two degenerate eigenstates produces another eigenstate.

    This page titled 3.5: Time-variation of expectation values - Degeneracy and constants of motion is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?