Skip to main content
Physics LibreTexts

6.3: Example - Oscillation in a fully mixing two state system

  • Page ID
    28776
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider the expectation value of a quantity \(S\) in a system which has two non-degenerate energy eigenstates \(|1 \rangle\) and \(|2 \rangle\), and where the Hermitian operator \(\hat{S}\) is defined by \(\hat{S}|1\rangle = |2\rangle\), \(\hat{S}|2 \rangle = |1 \rangle\).

    The general state can be written:

    \[|\phi \rangle = c_1 \text{ exp}(−iE_1t/\hbar )|1 \rangle + c_2 \text{ exp}(−iE_2t/\hbar )|2 \rangle \nonumber\]

    if we assume real \(c_1\), \(c_2\) it follows that the expectation value \(\langle \hat{S} \rangle\) will be:

    \[\langle \hat{S} \rangle = \langle \phi | \hat{S} | \phi \rangle \\ = \left[ c_1e^{iE_1t/\hbar} \langle 1| + c_2e^{iE_2t/\hbar} \langle 2| \right] \left[ c^*_1 e^{−iE_1t/\hbar} |2 \rangle + c^*_2 e^{−iE_2t/\hbar} |1\rangle \right] \\ = c_1c_2 [e^{i\omega_{21}t} + e^{−i\omega_{21}t} ] \\ = 2c_1c_2 \cos(\omega_{21}t) \nonumber\]

    Thus the expectation value of \(\hat{S}\) oscillates in time at frequency \(\omega_{21} = (E_2 − E_1)/\hbar\). This arises because \(\hat{S}\) is not compatible with the hamiltonian, and hence does not define a constant of the motion.


    This page titled 6.3: Example - Oscillation in a fully mixing two state system is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?