Skip to main content
Physics LibreTexts

12.7: Example of Born Approximation

  • Page ID
    28952
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider scattering of particles interacting via a 3D square well potential: \(V (r < a) = V_0; V (r > a) = 0\).

    The integral required here is then (with \(\chi = 2k \sin \frac{\theta}{2}\)):

    \[ \int_{0}^{a} r V_{0} \sin (\chi r) d r = \left[\frac{\sin (\chi r)-\chi r \cos (\chi r)}{\chi^{2}} \right]_{0}^{a} \nonumber\]

    whence:

    \[\frac{d \sigma}{d \Omega} = \left[\frac{2 \mu V_{0}}{\chi \hbar^{2}} \right]^{2} \left[ \frac{\sin (\chi a)-\chi a \cos (\chi a)} {\chi^{2}} \right]^{2} \nonumber\]

    Using a Maclaurin expansion, the low energy limit is:

    \[\frac{d \sigma}{d \Omega} = \left[\frac{2 \mu V_{0}}{\chi \hbar^{2}}\right]^{2} \frac{1}{9}\left[1-\frac{1}{5} \chi^{2} a^{2}\right] \nonumber\]

    From integrating over \(\theta\) and \(\phi\) the low and high energy limits for the total cross section are

    \[\sigma(E \rightarrow \infty) = 2 \pi \left[\frac{\mu}{\hbar^{2}}\right]^{2} \left[\frac{V_{0} a^{3}}{k a} \right]^{2} \\ \sigma(E \rightarrow 0) = 2 \pi \left[\frac{\mu}{\hbar^{2}} \right]^{2} \left[\frac{V_{0} a^{3}}{k a} \right]^{2} \frac{8}{9} \left(k^{2} a^{2}-\frac{2}{5} k^{4} a^{4}+\ldots \right) \nonumber\]


    This page titled 12.7: Example of Born Approximation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.