Skip to main content
Physics LibreTexts

7.3: Normal Modes for a One-dimensional Chain

  • Page ID
    6373
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The matrix A is all zeros except for 2 on the diagonal and −2 on the superdiagonal. But this doesn’t really help us solve the problem. The solution comes from physical insight, not mathematical trickery!

    Dispersion relation:

    \[ \omega(k)=2 \sqrt{\frac{K}{m}}\left|\sin \left(\frac{1}{2} k a\right)\right|\]

    Meaning of term “dispersion relation”:

    Start with an arbitrary wave packet, break it up into Fourier components.

    Each such component moves at a particular speed.

    After some time, find how all the components have moved, then sew them back together.

    The wave packet will have changed shape (usually broadened. . . dispersed).

    Remember that we haven’t done any statistical mechanics in this section, nor even quantum mechanics. This has been classical mechanics!


    This page titled 7.3: Normal Modes for a One-dimensional Chain is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.

    • Was this article helpful?