Skip to main content
\(\require{cancel}\)
Physics LibreTexts

13.2: Compression

  • Page ID
    7292
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    The way in which the volume of a material decreases with pressure at constant temperature is described by the isothermal compressibility, κ:

    \[ \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}.\]

    Note the necessary minus sign.

    Later, we shall need to distinguish between “isothermal compressibility” and “adiabatic compressibility”, and we shall need a subscript to the symbol κ in order to distinguish between the two. For the time being, however, κ with no subscript will be taken to mean the isothermal compressibility.

    The reciprocal of κ is called the isothermal bulk modulus, sometimes (understandably) called the isothermal incompressibility.

    Question: What are the SI units for compressibility and bulk modulus?

    Exercise: Show that the isothermal compressibility of an ideal gas is 1/P.

    Exercise: What is the bulk modulus of air at atmospheric pressure?


    13.2: Compression is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?