Skip to main content
Physics LibreTexts

22: Source of Magnetic Field

  • Page ID
    19532
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Understand how to apply the Biot-Savart Law to determine the magnetic field from an electric current.
    • Understand how to apply Amp`ere’s Law.
    • Understand how to model the forces that are exerted on each other by two wires carrying current.
    • Understand how to model a solenoid and a toroid.

    In this chapter, we develop the tools to model the magnetic field that is produced by an electric current. We will introduce the Biot-Savart Law, which is analoguous to Coulomb’s Law in that it can be used to calculate the magnetic field produced by any current. We will also introduce Amp`ere’s Law, which can be thought of as the analogue to Gauss’ Law, allowing us to easily determine the magnetic field when there is a high degree of symmetry.

    prelude

    How does an electromagnet work?

    1. Current is passed through a magnet, increasing its strength.
    2. Current is passed through a circular coil, creating a magnetic field.


    This page titled 22: Source of Magnetic Field is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.