Skip to main content
Physics LibreTexts

5.6: Angular Momentum

  • Page ID
    17394
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In analogy with the definition of torque, \(\boldsymbol{\tau}=\boldsymbol{r} \times \boldsymbol{F}\) as the rotational counterpart of the force, we define the angular momentum \(\boldsymbol{L}\) as the rotational counterpart of momentum:

    \[\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p} \label{rp}\]

    For a rigid body rotating around an axis of symmetry, the angular momentum is given by

    \[\boldsymbol{L}=I \boldsymbol{\omega} \label{iomega}\]

    where \(I\) is the moment of inertia of the body with respect to the symmetry axis around which it rotates. Equation \ref{iomega} also holds for a collection of particles rotating about a symmetry axis through their center of mass, as readily follows from 5.4.2 and \ref{rp}. However, it does not hold in general, as in general, \(\boldsymbol{L}\) does not have to be parallel to \(\boldsymbol{\omega}\). For the general case, we need to consider a moment of inertia tensor \(\boldsymbol{I}\) (represented as a \(3×3\) matrix) and write \(\boldsymbol{L}=\boldsymbol{I} \cdot \boldsymbol{\omega}\). We’ll consider this case in more detail in Section 7.3.


    This page titled 5.6: Angular Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.