Skip to main content
Physics LibreTexts

7.6: Linear Stark Effect

  • Page ID
    1221
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Let us examine the effect of an electric field on the excited energy levels of a hydrogen atom. For instance, consider the \( n=2\) states. There is a single \( l=0\) state, usually referred to as \( 2s\) , and three \( l=1\) states (with \( m=-1, 0, 1\) ), usually referred to as \( 2p\) . All of these states possess the same energy, \( E_{200} = -e^2/(32\pi\,\epsilon_0 \,a_0)\) . As in Section 7.4, the perturbing Hamiltonian is

    \[ H_1= e\, \vert{\bf E}\vert\, z. \ref{663}\]

    In order to apply perturbation theory, we have to solve the matrix eigenvalue equation

    \[ {\bf U} \,{\bf x} = \lambda \,{\bf x}, \label{664}\]

    where \( {\bf U}\) is the array of the matrix elements of \( H_1\) between the degenerate \( 2s\) and \( 2p\) states. Thus,

    $ {\bf U} = e \,\vert{\bf E}\vert \left( \begin{array}{cccc} 0&\lan...
...2,1,0\vert\,z\,\vert 2,0,0\rangle&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{array}\right),$ \ref{665}

    where the rows and columns correspond to the \( \vert 2,0,0\rangle\) , \( \vert 2,1,0\rangle\) , \( \vert 2,1,1\rangle\) , and \( \vert 2,1,-1\rangle\) states, respectively. Here, we have made use of the selection rules, which tell us that the matrix element of \( z\) between two hydrogen atom states is zero unless the states possess the same \( m\) quantum number, and \( l\) quantum numbers that differ by unity. It is easily demonstrated, from the exact forms of the \( 2s\) and \( 2p\) wavefunctions, that

    \( \langle 2,0,0\vert\,z\,\vert 2,1,0\rangle = \langle 2,1,0\vert\,z\,\vert 2,0,0\rangle = 3\,a_0.\) \ref{666}

    It can be seen, by inspection, that the eigenvalues of \( {\bf U}\) are \( \lambda_1= 3\,e\,a_0\,\vert{\bf E}\vert\) , \( \lambda_2 = - 3\,e\,a_0\,\vert{\bf E}\vert\) , \( \lambda_3=0\) , and \( \lambda_4 =0\) . The corresponding eigenvectors are

    \( {\bf x}_1\) \( = \left( \begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{array} \right),\) \ref{667} \( {\bf x}_2\) \( = \left( \begin{array}{c} 1/\sqrt{2} \\ - 1/\sqrt{2} \\ 0 \\ 0 \end{array} \right),\) \ref{668} \( {\bf x}_3\) \( = \left( \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right),\) \ref{669} \( {\bf x}_4\) \( = \left( \begin{array}{c} 0 \\ 0\\ 0 \\ 1\end{array} \right).\) \ref{670}

    It follows from Section 7.5 that the simultaneous eigenstates of the unperturbed Hamiltonian and the perturbing Hamiltonian take the form

    \( \vert 1\rangle\) \( = \frac{\vert 2,0,0\rangle + \vert 2,1,0\rangle}{\sqrt{2}},\) \ref{671} \( \vert 2\rangle\) \( = \frac{\vert 2,0,0\rangle - \vert 2,1,0\rangle}{\sqrt{2}},\) \ref{672} \( \vert 3\rangle\) \( = \vert 2,1,1\rangle,\) \ref{673} \( \vert 4\rangle\) \( = \vert 2,1,-1\rangle.\) \ref{674}

    In the absence of an electric field, all of these states possess the same energy, \( E_{200}\) . The first-order energy-shifts induced by an electric field are given by

    \( {\mit\Delta} E_1\) \( = +3\,e\,a_0\, \vert{\bf E}\vert,\) \ref{675} \( {\mit\Delta} E_2\) \( = -3\,e\,a_0 \,\vert{\bf E}\vert,\) \ref{676} \( {\mit\Delta} E_3\) \( = 0,\) \ref{677} \( {\mit\Delta} E_4\) \( = 0.\) \ref{678}

    Thus, the energies of states 1 and 2 are shifted upwards and downwards, respectively, by an amount \( 3\,e\,a_0\, \vert{\bf E}\vert\) in the presence of an electric field. States 1 and 2 are orthogonal linear combinations of the original \( 2s\) and \( 2p(m=0)\) states. Note that the energy-shifts are linear in the electric field-strength, so this is a much larger effect that the quadratic effect described in Section 7.4. The energies of states 3 and 4 (which are equivalent to the original \( 2p(m=1)\) and \( 2p(m=-1)\) states, respectively) are not affected to first order. Of course, to second order the energies of these states are shifted by an amount that depends on the square of the electric field-strength.

    Note that the linear Stark effect depends crucially on the degeneracy of the \( 2s\) and \( 2p\) states. This degeneracy is a special property of a pure Coulomb potential, and, therefore, only applies to a hydrogen atom. Thus, alkali metal atoms do not exhibit the linear Stark effect.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 7.6: Linear Stark Effect is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?